
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 1

Neural Library Recommendation by Embedding
Project-Library Knowledge Graph

Bo Li, Haowei Quan, Jiawei Wang, Pei Liu, Haipeng Cai, Yun Yang, and Li Li

Abstract—The prosperity of software applications brings fierce market competition to developers. Employing third-party libraries
(TPLs) to add new features to projects under development and to reduce the time to market has become a popular way in the
community. However, given the tremendous TPLs ready for use, it is challenging for developers to effectively and efficiently identify the
most suitable TPLs. To tackle this obstacle, we propose an innovative approach named PyRec to recommend potentially useful TPLs
to developers for their projects. Taking Python project development as a use case, PyRec embeds Python projects, TPLs, contextual
information, and relations between those entities into a knowledge graph. Then, it employs a graph neural network to capture useful
information from the graph to make TPL recommendations. Different from existing approaches, PyRec can make full use of not only
project-library interaction information but also contextual information to make more accurate TPL recommendations. Comprehensive
evaluations are conducted based on 12,421 Python projects involving 963 TPLs, 9,675 extra entities, 121,474 library usage records,
and 73,277 contextual records. Compared with five representative approaches, PyRec improves the recommendation performance by
35.81% to 198.87% on average across all cases.

Index Terms—third-party library, recommendation, knowledge graph, graph neural network, Python

✦

1 INTRODUCTION

R ECENT years have witnessed the astonishing growth of
software applications, especially open-source Python

applications. As reported by IEEE Spectrum [1], Python
has become the most popular language since 2021. Many
popular applications like Google search engine, YouTube,
and Instagram are built in Python [2]. One reason that fuels
Python’s popularity could be the large number of third-
party libraries (TPLs) readily to be used by the community
[3]. For example, more than 390,000 Python TPLs with over
3 million versions are available in May 2023 in the Python
Package Index (PyPI) repository [4].

Compared with programming from scratch, TPLs offer
tailor-made APIs with the same functionalities [5] but less
bugs/deficiencies [6]. Therefore, seeking TPLs with desired
functionalities and integrating them in projects under de-
velopment is much more effective [7]–[10]. Indeed, it has
become a common practice for developers to regularly use
TPLs to accelerate their development process and/or deliver
new features [11].

Unfortunately, given the huge number of TPLs available
for use, it is challenging for developers to seek the most

• Bo Li is with the College of Arts, Business, Law Education, and Infor-
mation Technology, Victoria University, Melbourne, AU, 3011.E-mail:
li.bo@vu.edu.au

• Haowei Quan, Jiawei Wang, and Pei Liu are with the Faculty of Informa-
tion Technology, Monash University, Melbourne, AU, 3800.
E-mail: {haowei.quan, jiawei.wang1, pei.liu}@monash.edu

• Haipeng Cai is with the School of Electrical Engineering and Com-
puter Science (EECS) at Washington State University, Pullman, USA,
99163.E-mail: haipeng.cai@wsu.edu

• Yun Yang is with the Department of Computing Technologies, Swinburne
University of Technology, Melbourne, VIC, Australia, 3122. E-mail:
yyang@swin.edu.au

• Li Li is with the School of Software, Beihang University, Beijing, China,
100191.E-mail: lilicoding@ieee.org

Manuscript received xxx xx, 2023; revised xxx xx, 2023.

suitable TPLs for their projects [12], [13]. First, manually
inspecting the functionalities, interfaces, performance, etc.,
of tremendous TPLs is very time-consuming [14]. It is even
more sophisticated nowadays as TPLs are evolving rapidly
[2] and the time-to-market constraint is becoming tighter
[15]. Second, TPL usage has specific characteristics [11],
[16], e.g., combinations and dependencies. Finding appro-
priate TPLs fulfilling such characteristics is another time-
consuming process [5], [6].

Inspired by the great success of recommender systems
in a variety of domains [17], many TPL recommendation
approaches have been proposed recently to accelerate the
TPL seeking process [6], [15], [18], [19]. Generally, they pro-
vide developers with a short list of TPLs for consideration.
For example, LibRec [18] and CrossRec [6] are collaborative
filtering (CF)-based approaches that find potentially useful
TPLs for Java projects. The general idea is to recommend
TPLs used by similar projects but not yet by the current
project. LibSeek [19] is designed for recommending TPLs
for Android mobile apps. It embeds features of mobile apps
and TPLs into latent vectors via matrix factorization (MF)
to find potentially useful TPLs for a given Android mobile
app. GRec [15] is a deep learning (DL)-based approach that
recommends TPLs for Android apps. It models mobile apps,
TPLs, and their usage relations as a bipartite graph, and
then employs the graph neural network (GNN) to distill
information from the graph to improve the recommendation
performance.

Preliminary user studies have confirmed the usefulness
and effectiveness of recommending TPLs for software appli-
cation development [15], [19]. However, the performance of
existing approaches needs to be further improved. Specifi-
cally, they treat different projects or TPLs as independent in-
stances and utilize only project-library interaction information,
i.e., which project has used which TPLs, to make recom-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 2

p1

l1

p2

p3

p4

l2

l3

l4

l5

l6

matplotlib

torchaudio

PyYAML

PyTorchVideo

SQLAlcemy

scikit-video

Fig. 1. Exemplar Project-Library Bipartite Graph BG

p1

p2

p3

p4

l1

l2

l3

l4

l5

l6

topic1

r1

r1

r1

r1

r1

r1

r1

r1

r2

r2

r3

r3

r4

r4

r5

Relations

r1

r2

r3

r4

r5

TPL usage

depend on

described by

categorized by

developed byauthor1

category1

multimedia

sound/audio

soumith@pytorch.orgauthor1

category1

topic1

Entities

Fig. 2. Exemplar Project-Library Knowledge Graph KG

mendations. This is acceptable when the developers have
determined many TPLs to be used in a project. However,
when the project is at an early development stage, usually
only very limited TPLs have been determined. In this case,
there would be less project-library interaction information
available for recommendation. As a result, the recommen-
dation performance is much lower.

A potential solution is to utilize contextual information
[20] like the inherent relations between different projects and
different TPLs, which have been overlooked by existing ap-
proaches. For example, projects with the same topic [21] on
GitHub may share similar characteristics implemented by
the same TPL. TPLs with the same keywords in a category
may have the same/similar functionalities and interfaces
and are exchangeable to each other [15]. In addition, a
TPL usually depends on some other TPLs and adds more
features to the dependency libraries. Once a dependency
TPL is chosen by a project, the TPLs depending on it may
also be of interest to developers. In practice, the contextual
information, including the above-mentioned ones, are help-
ful in finding more suitable TPLs [22]. However, existing
approaches have unfortunately ignored such information
and thus their performance are constrained.

In this paper, we take TPL recommendation for Python
projects as a use case. The reason is that Python has emerged
as the most popular programming language in recent years.
Both the amount of Python projects and the amount of
Python libraries ready for use are much greater than the
other programming languages [23]. In addition, Python
developers rely on the rich functionalities offered by the
huge collection of TPLs for fast prototyping [2], [23], [24].
Therefore recommending suitable TPLs can be beneficial
for them. However, the TPL recommendation for Python
projects has been neglected by the community. Please note
that the approach proposed in this paper, i.e., PyRec, can also
be applied to other programming scenarios, like recommending
TPLs for Android mobile app development or conventional Java
project development, wherever the required contextual information
is available.

PyRec is an innovative approach that makes full use of
both project-library interaction information and contextual
information to provide high-accuracy recommendations.
Specifically, we map the Python projects, TPLs, and their
interactions into a bipartite graph (BG) in which Python
projects and TPLs are nodes and the project-library interac-
tions are edges connecting each pair of nodes, as exemplified
in Fig. 1. Then, we extend BG to a knowledge graph (KG)
by adding new nodes and edges according to available

contextual information, as illustrated in Fig. 2. Next, we
employ GNN to distill useful information from the KG to
make TPL recommendations. Compared with the state-of-
the-art approaches like LibRec [18], CrossRec [6], LibSeek
[19], and GRec [15], PyRec can make more accurate rec-
ommendations, with an average accuracy improvement of
87.39%, 198.87%, 35.81%, and 48.93%, respectively. The key
contributions of this research are concluded as follows.

• We are the first to use both project-library interaction
information and contextual information for TPL recom-
mendation.

• With the help of contextual information, we model
Python projects, TPLs, and their interactions as a
knowledge graph (KG), in which inherent relations
between different projects and different TPLs are repre-
sented. This allows capturing more information crucial
for accurate TPL recommendation.

• We propose an innovative GNN-based DL model to dis-
till useful information from the generated KG for TPL
recommendation. In addition, with a dedicated atten-
tion mechanism, our model can automatically identify
the usefulness of information possessed by different
neighbor nodes and relations and thus can distill more
useful information and mitigate the negative impact of
unuseful information.

• We make the first attempt to recommend potentially
useful TPLs for Python projects. We prototype PyRec
and conduct extensive experiments on a large-scale
dataset including 12,421 Python projects, 963 distinct
TPLs, 9,675 extra entities, 121,474 project-library inter-
action records, and 73,277 pieces of contextual informa-
tion.

The rest of this paper is organized as follows. Section
2 motivates the research of this paper. Section 3 introduces
PyRec in detail. Section 4 evaluates PyRec experimentally.
Section 5 reviews related work. Then, Section 6 concludes
this paper and points out future work.

2 MOTIVATING EXAMPLE

Fig. 1 provides an exemplar bipartite graph (denoted as BG)
modeling the project-library interactions. Specifically, it has
4 Python project nodes denoted as p1, p2, ..., p4, respectively,
and 6 TPL nodes denoted as l1, l2, ..., l6, respectively. The
direct project-library interactions are represented by edges
between the corresponding projects and TPLs. For example,
the edge between p1 and l2 (torchaudio [25]) indicates that
Python project p1 uses TPL torchaudio. Let us take seeking
new TPLs for project p1 as an example hereafter.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 3

CF-based approaches like CrossRec [6] make TPL rec-
ommendations based on the similarities between different
projects in terms of TPL usage. For example, project p1
invokes two TPLs, i.e., l1 (matplotlib [26]) and l2 (torchaudio).
In the meantime, project p2 also invokes these two TPLs.
This indicates that p1 and p2 have some similarities in terms
of TPL usage. In this case, TPLs used in p2 but not yet
in p1 may be of interest to p1, such as l3 (PyYAML [27]).
Thus, PyYAML is recommended to p1. Apparently, CF-based
approaches only utilize part of those direct project-library
interactions in BG, i.e., interactions involved in projects
similar to p1.

MF-based approaches like LibSeek [19] embed projects
and TPLs into latent vectors to make recommendations.
They utilize all direct project-library interactions in BG to
learn those latent vectors. For example, p1’s latent vector is
learned based on two interactions, i.e., interaction between
p1 and l1 (matplotlib) and interaction between p1 and l2
(torchaudio). Similarly, l1’s latent vector is learned based
on the interaction between p1 and l1, and the interaction
between p2 and l1.

In recent years, deep learning has been widely adopted
to solve a variety of technical problems. Many DL-based
recommender systems have been proposed. However, as
the recommender systems are usually domain-specific [28],
general DL-based systems like ChatGPT1 could not perform
well in the TPL recommendation field. Therefore, specifi-
cally designed DL-based recommendation approaches are
in urgent need by the software engineering (SE) community.
GRec [15] is the first DL-based approach that is capable of
exploiting transitive information in BG to learn the latent
vectors. For example, both projects p1 and p2 use l1 (mat-
plotlib) and l2 (torchaudio), and thus p2 is similar to p1. Sim-
ilarly, both projects p2 and p3 use l3 (PyYAML), and thus p3
is similar to p2. In this case, although p3 is not similar to p1,
it may contribute useful information to the learning of p1’s
latent vector. This transitive relationship between p3 and p1
is called high-order interaction [15] reflected by the path p3-l3-
p2-l2(l1)-p1 in BG. The utilization of transitive information
boosts GRec’s TPL recommendation performance.

Theoretically, all the above-mentioned approaches treat
projects and TPLs as independent instances, i.e., neither
any relationships between Python projects nor any relation-
ships between TPLs are considered. Therefore, they make
TPL recommendations based solely on the direct/transitive
project-library interactions possessed by BG. Unfortunately,
the overlook of real-world project relations and TPL re-
lations inevitably undermined their TPL recommendation
performance. Indeed, such relations can be identified based
on contextual information relevant to Python projects or
TPLs. For example, the information on developers, cate-
gories, introductions, and keywords can help identify the
relationships between two TPLs. As demonstrated by Fig.
2, projects p1 and p2 are described by the same topic
keyword topic1 (multimedia) on GitHub, and thus have
similar functionalities. Therefore, p4 may contribute to the
learning of p1’s latent vector. However, it is not utilized by
existing approaches (e.g., there is no interaction between p1

1. https://openai.com/blog/chatgpt

and p4 represented in Fig. 1). This also applies to TPLs l4
(PyTorchVideo [29]) and l6 (scikit-sound [30]).

To model these project relations and TPL relations, we
add new entities, e.g., authors and keywords, into BG. Then,
we create edges between the original project/TPL nodes and
newly added entity nodes. In this case, BG is converted to
KG (denoted as KG) shown in Fig. 2. Different from BG
in which all edges have the same type, KG has different
types of edges. For example, an edge from p1 to l1 represents
the TPL usage interactions (denoted as r1), the edge from
l2 to entity category1 (sound/audio) indicates that torchaudio
belongs to category sound/audio on PyPI (denoted as r3), etc.
A unique characteristic of TPLs is that they could depend
on other TPLs. To model such dependencies, we add new
edges for each pair of involved TPLs in BG. For example,
l5 (SQLAlchemy [31]) depends on l2 (torchaudio), we have an
edge from l5 to l3 with the type of r5.

With KG, we can mine more information beneficial for
TPL recommendation for p1. For example, l2 (torchaudio)
and l4 (PyTorchVideo) are developed by the same developer
soumith. p1 may also have interests in PytorchVideo when
it uses torchaudio. Then, useful information can be distilled
from l4 for p1 through the path PytorchV ideo

developed by−−−−−−−−→
soumith

develop−−−−−→ torchaudio
TPL usage−−−−−−−→ p1. Similarly, as

l6 (scikit-sound) and l2 (torchaudio) belong to the same
category sound/audio on PyPI, l6 may also contribute use-
ful information to p1. This can be captured through the
path scikit− sound

categorized by−−−−−−−−−→ sound/audio
categorize−−−−−−−→

torchaudio
TPL usage−−−−−−−→ p1. Besides, as l5 (SQLAlchemy) is

implemented based on torchaudio, it may provide new fea-
tures for p1 and thus of interests to p1. This information can
be represented through the path SQLAlchemy

depend on−−−−−−→
torchaudio

TPL usage−−−−−−−→ p1. We can find that extending GB
to KG with contextual information can help utilize more in-
formation that has been overlooked by existing approaches.

However, it is challenging to incorporate contextual
information into TPL recommendations. Indeed, there are
many significant differences between implementing recom-
mender systems based on KG, e.g., PyRec, and implement-
ing recommender systems based on BG, e.g., GRec. First,
there are much more nodes and edges in KG than that in
BG, determined by the total number of entities involved in
the contextual information. The KG-based recommendation
approach should be able to handle those extra and usually
large volumes of nodes and edges. Second, different from
BG which has only project nodes and library nodes, KG
contains many different types of nodes, determined by the
types of involved entities in the contextual information.
Hence, the KG-based recommendation approach should be
capable of handling more node types. Third, all edges in
BG have the same type and thus such edges do not need
to be embedded by the DL model. In contrast, edges in
KG have many different types. Therefore, the KG-based
recommendation approach must embed those edges by the
DL model. Fourth, nodes in different paths in KG usually
do not contribute information evenly. For example, l4, l5,
and l6 all connect to l2. However, l4 connects to l2 as they
have the same developer soumith, l6 connects to l2 as they
are in the same category sound/audio, and l5 connects to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 4

l6

p1

Layer 1

Graph

Embedding
Information Distillation

Embedding

Aggregation

Input

û(l6,p1)

..
.

..
.

TPL Prediction

Recommendation

List (top n)

2 3

4

5

p1

Concatenation

Inner product

Graph Generation1

TPLs

Layer 2 Layer 3 ...

TPL usage

records

Contextual

information

KG

...

...

r3

...
..
.

3

Attention

û(l1,p1)

û(l2,p1)

ranking

Dataset

p1

p1 p1

l6 l6 l6

Attention

Concatenation

Layer 1 Layer 2 Layer 3 ...

GNN

GNN

TPL usage

records

Contextual

information

Project p1

..
.

p1

p2

p3

p4

l1

l2

l3

l4

l5

l6

topic1

r1

r1

r1

r1

r1

r1

r1

r1

r2

r2

r3

r3

r4

r4

r5

author1

p1

p2

p3

p4

l1

l2

l3

l4

l5

l6

topic1

r1

r1

r1

r1

r1

r1

r1

r1

r2

r2

r3

r3

r4

r4

r5

author1

category1

Fig. 3. General process of PyRec

l2 due to the dependency relationship. As there are many
different types of nodes and edges, it is hard to empirically
set up their weights, i.e., how much information a node can
contribute through a specific path in KG. Therefore, new
attention mechanisms are needed to automatically formu-
late the usefulness of different types of relations. Finally,
at the model optimization stage, in addition to optimizing
the project-library interactions, we also need to optimize the
embeddings of extra nodes and all edges, which is referred
to as Graph Embedding Optimization in this paper. Thus, a
new model optimization strategy is needed.

To summarise, new approaches that can make precise
use of both contextual information and project-library inter-
action information are needed by the SE community to help
developers effectively find useful TPLs.

3 PYREC APPROACH

3.1 Process Overview

Given a Python project, say p1 in Fig. 2, PyRec takes three
pieces of data as input, including TPL usage records of
existing projects, p1’s current TPLs, and contextual informa-
tion, i.e., project-project and TPL-TPL relationships. It goes
through five phases to recommend potentially useful TPLs
for p1, as shown in Fig. 3. In Phase 1 (Graph Generation),
PyRec builds up KG based on given TPL usage records and
contextual information. Different from GRec [15] that has
only project nodes and TPL nodes, PyRec identifies new
entity nodes, e.g., topic1, author1, and category1 in Fig.
2, based on contextual information. Then, it creates edges
between those entity nodes and existing project/TPL nodes
to supplement KG. In Phase 2 (Graph Embedding), PyRec
embeds each node and edge in KG into an individual latent
vector. This is different from GRec [15] in which only nodes
are embedded. In Phase 3 (Information Distillation), PyRec
employs a multi-layer GNN to distill useful information
from KG. Specifically, it uses the first GNN layer to distill
information from neighbor nodes one hop away, it uses the

second layer to distill information from neighbor nodes two
hop away, and so on. PyRec implements unique attention
mechanisms to help identify more useful information. With
a m-layer GNN, PyRec can eventually explore useful in-
formation for p1 from its neighbor nodes within m hops
in the KG. In Phase 4 (Embedding Aggregation), for each
project/TPL node, its latent vector and information col-
lected by GNN are concatenated into a new vector. Finally,
after training in Phase 5 (TPL Prediction), PyRec predicts
the usefulness of each TPL to p1 and recommends top n
the most useful TPLs. Different from GRec [15], the training
process of PyRec consists of two parts: graph embedding
optimization and project-library interaction optimization.

Usage Example: Alice is seeking new TPLs for her Python
project. Without PyRec, she explores a large number of TPLs
hosted on PyPI and spends a long time reading the documents
and testing the functionalities, interfaces, dependencies, and per-
formance of each individual TPL. With PyRec, Alice chooses a
few keywords that can sketch her project and lists the TPLs
currently used or to be used in the project if any. Then, PyRec
gives out a list of (say, 10) TPLs, which are potentially useful
for her project. Now, Alice can focus on inspecting the usefulness
of those recommended TPLs. Please note that PyRec is designed
to recommend potentially useful TPLs for Alice to accelerate her
TPL-seeking process. It is Alice who makes the final decisions. In
addition, Alice can iteratively use PyRec to find new TPLs until
she has successfully completed her project. Moreover, the trained
KG can be used multiple times. It can also be easily retrained once
projects or TPLs are updated. This helps PyRec include emerging
TPLs and achieve even higher recommendation accuracy.

3.2 Phase 1: Graph Generation

In this phase, PyRec generates the knowledge graph KG
according to given TPL usage records (i.e., project-library
interaction information) and contextual information.

Library Usage Records. These records represent the
project-TPL interactions of all Python projects. To model

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 5

such information by graph, PyRec maps each Python project
and TPL to an individual node in the bipartite graph BG.
Let us denote the set of Python projects as P and the set
of TPLs as L. Then, we have BG = (P,RPL,L), in which
RPL = {(p, r0, l)|p ∈ P, r0 = 1, l ∈ L}. A triple (p, r0, l)
represents the edge between project p and TPL l in BG, i.e.,
the project-library interaction between p and l. Note that we
use triple (p, r0, l) rather than couple (p, l) here for the ease
of combination with contextual information later.

Contextual Information. The contextual information is
used to supplement the overlooked relationships between
nodes in the BG. It contains many real-world entities like
developers, project categories, TPL categories, topics, etc.
[32]. First, PyRec identifies those entities and creates the
corresponding entity nodes in the BG. For example, given
two topic keywords Education and Speech Recognition, PyRec
creates two nodes, one for each. Second, PyRec creates
edges in BG between newly added entity nodes and existing
nodes. It is worth noting that the dependencies between
TPLs incur only new edges between the corresponding
TPLs. Finally, the BG becomes a knowledge graph KG.

As introduced in Section 2, each edge in KG has a specific
type determined by the nodes it connects. We denote the set
of newly added entity nodes that are related to projects as
EP , the set of newly added entity nodes that are related to
TPLs as EL, the set of newly added edges as RE . Now, with
contextual information, KG can be represented as (H,R, T),
in which the node sets H, T ⊂ P ∪ EP ∪ EL, the edge set
R = RPL ∪RE termed {(h, r, t)|h ∈ H, r ∈ R, t ∈ T }.
A triple (h, r, t) describes the relation r between head
entity node h and tail entity node t. Please note that we
treat those relations as bidirectional relations in this pa-
per, e.g., l2 (torchaudio) is developed by author1 (soumith)
and author1 (soumith) develops l2 (torchaudio) for a relation
(author1, r4, l2).

3.3 Phase 2: Graph Embedding

Embedding has been widely used to learn latent features of
entities in modern recommender systems [33]. Theoretically,
the embedding process is to put similar entities, e.g., projects
with similar functionalities, close to each other in the latent
space [34]. PyRec implements a novel embedding mecha-
nism as the information contained in the knowledge graph
KG is much more complicated, i.e., there are different types
of nodes and different types of edges in the graph. Given
a triple (h, r, t) ∈ KG, PyRec embeds nodes h and t into
a d-dimensional node space [35]. The corresponding latent
vectors are denoted as eh ∈ Rd and et ∈ Rd, respectively.
The latent vector of a node can be interpreted as its features
[15], [19]. For example, an embedding of TPL may repre-
sent its functionality, performance, popularity, compatibility,
reliability, interface, etc. An embedding of a project may
represent how much it is interested in each feature. Besides,
PyRec embeds the relation r in triple (h, r, t) into a k-
dimensional relation space [35]. The corresponding latent
vector is denoted as er ∈ Rk. The latent vector of a relation
(edge) can be interpreted as its type, impact, importance,
and usefulness of t to h, etc. Please note that d is not
necessarily equal to k in practice.

PyRec employs the widely used TransR [35] to learn the
latent vectors relevant to each triple (h, r, t) in KG. Specifi-
cally, it projects eh and et from the d-dimension node space
to the k-dimension relation space. This can be done with
the help of a trainable matrix M1 ∈ Rk×d, i.e., erh = M1eh
where erh is the projected embedding of h. Similarly, we have
ert = M1et. The learning process of er is to put the projected
erh and ert close to er in the relation space of r. In other
words, it tries to minimize the following equation.

fr(h, t) = ∥erh + er − ert∥22 (1)
where symbol ∥ · ∥2 represents the Euclidean distance.

All embeddings are initialized with random values and
learned during the training process (see Section 3.7).

3.4 Phase 3: Information Distillation
In this phase, for each node h ∈ KG, e.g., Python project
node p1 and TPL node l6 in Fig. 3, PyRec distills useful
information from its neighbor nodes for subsequent TPL
recommendation. This is done by GNN’s message propaga-
tion mechanism which can capture information for a target
node from its neighbor nodes in a graph [17], [36]. More im-
portantly, different neighbor nodes may contribute different
information of different levels of usefulness. Thus, PyRec
applies attention mechanisms [34] to automatically adjust
the importance of each neighbor node. We first discuss how
to distill information from h’s one-hop neighbor nodes, and
then expand it to multiple hops.

Step 1: One-hop Information Distillation. PyRec em-
ploys N (h) to denote all relations in KG that take h as head
node, i.e., N (h) = {(h, r, t)|∃(h, r, t) ∈ R,∀t ∈ T }. Indeed,
N (h) indicates the direct interactions between h and its
one-hop neighbor nodes. Then, h’s one-hop information,
denoted as eN (h), can be gathered as follows.

eN (h) =
∑

∀(h,r,t)∈N (h)

wr(h, t)et (2)

Function wr(h, t) calculates the decay factor which controls
how much information can be gathered from t along relation
r. It is defined as follows.

wr(h, t) = ert · fact
(
erh + er

)
(3)

where symbol (·) denotes the inner product, fact() is the
nonlinear activation function like tanh [34] used in this
paper.
Remark: PyRec applies an attention mechanism by including
fact(e

r
h + er) in Eq. (3) to discriminate the importance of h’s

neighbors [34], i.e, allowing node t to contribute more information
to h if it is close to h in the relation space of r.

Given all relations in N (h), PyRec adopts the Softmax
function [33] shown below to normalize all decay factors.

wr(h, t) =
exp(wr(h, t))∑

∀(h,r∗,t∗)∈N (h) exp(wr∗(h, t∗))
(4)

Now, PyRec generates a vector with both the original
embedding eh and the information gathered from h’s one-
hop neighbors, i.e., eN (h). We denote the vector as e1h.

e1h =LeakyReLU

(
M2

(
eh + eN (h)

))
+LeakyReLU

(
M3

(
eh ⊙ eN (h)

)) (5)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 6

..
.

..
...
.

Embedding
Layer

GNN Layer 1 GNN Layer 2 GNN Layer 3

ep1

3ep1

3

e
l1

2e
l1

2

e
l2

2e
l2

2

e topic1

2e topic1

2

..
.

..
.

..
.

e
p2

1e
p2

1

e
l5

1e
l5

1

eauthor1

1eauthor1

1

ecategory1

1ecategory1

1

el4
el4

..
.

..
.

..
. r1

r1

r2

r1r5

r4

r3

r4

Fig. 4. Gathering multi-hop information from p3 to for l2

where LeakyReLU() is the activation function [15], symbol
(⊙) is the element-wise product, and M2,M3 ∈ Rd′×d are two
trainable matrices used to transform eh from the current
GNN layer to the next GNN layer. d′ is the transformation
parameter. Its value is equal to the size of the next GNN
layer.
Remark: PyRec applies the second attention mechanism by in-
cluding LeakyReLU

(
M3(eh ⊙ eN (h))

)
in Eq. (5). It allows

to selectively aggregate one-hop information, i.e., passing more
information to h if eh is closer to eN (h) in latent space. We
will experimentally study the effectiveness of the two attention
mechanisms later in Section 4.5.

Step 2: Multi-hop Information Distillation. PyRec
stacks more GNN layers to capture the multi-hop informa-
tion. Specifically, each GNN layer takes vectors produced
by the previous layer as input and iterates the process
introduced in Step 1 to generate new vectors. In this way,
information possessed by neighbor nodes x-hops away from
h in KG can be gathered by the x-th GNN layer. We
iteratively define the embedding of h updated by the x-th
layer as follows.

exh =LeakyReLU

(
M2

(
ex−1
h + ex−1

N (h)

))
+LeakyReLU

(
M3

(
ex−1
h ⊙ ex−1

N (h)

)) (6)

Example: Fig. 4 provides an example that p1 distills 3-hop
information from l4 with 3 GNN layers, as l4 connects to p1
with 3 hops in Fig. 2 over path l4

r4−→ author1
r4−→ l2

r1−→ p1.
Latent vector el4 of node l4 is initialized in Phase 2. Then, it is
distilled through relation r4 by the first GNN layer and merged
to vector e1author1 . Next, it is distilled through relation r4 by the
second GNN layer and merged to vector e2l2 . Finally, it is merged
into vector e3p1

by the third GNN layer.

3.5 Phase 4: Embedding Aggregation
In the previous phase, PyRec employs m-layer GNN to
gather information for node h from its m-hop neighbor
nodes in KG. Each GNN layer produces an individual vector
as output. In this phase, PyRec aggregates h’s embedding
and those generated vectors to constitute a final vector for
h: −→

h = eh∥e1h∥e2h∥e3h∥ · · · ∥emh (7)

where ∥ is the concatenation operation. Vector
−→
h possesses

not only h’s embedding but also useful information distilled
from all its neighbor nodes within m hops.

3.6 Phase 5: TPL Prediction
As introduced in Section 3.3, the vector of a TPL node
represents its features and the vector of a Python project
node represents its interests in those features [15], [19].
Therefore, PyRec approximates the usefulness of TPL l to
project p by:

û(l, p) =
−→
l · −→p (8)

For each TPL l ∈ L, PyRec approximates its usefulness for
p. Then, it recommends n TPLs with the highest usefulness
values to developers of p. Upon the receipt of those TPLs,
developers can prioritize the evaluation and find out if these
recommended TPLs are indeed useful.

3.7 Optimization
Different from existing DL-based recommendation ap-
proaches [37], [38], PyRec optimizes the following two loss
functions alternatively via Adam [39] to train the entire
model, including graph embedding loss Lrel and TPL pre-
diction loss Lpre.

Graph Embedding Optimization. PyRec follows TransR
[35] to optimize embeddings of KG. Specifically, it considers
both valid relations R and invalid relations R′ in KG
during the training. To generate R′, it replaces node t in
each valid triplet (h, r, t) ∈ R to a random node t′ ∈ T ,
such that (h, r, t′) /∈ R. With R∗ = {(h, r, t, t′)|(h, r, t) ∈
R, (h, r, t′) ∈ R′}, PyRec minimizes the embedding loss:

Lrel =
∑

∀(h,r,t,t′)∈R∗

−lnσ

(
fr(h, t

′)− fr(h, t)

)
(9)

where σ() is the sigmoid function, function fr() is cal-
culated via Eq. (1). Eq. (9) indicates that PyRec tends to
prioritize valid relations and penalize invalid relations.

Project-Library Interaction Optimization. Similarly,
PyRec uses both valid project-library interactions RPL and
invalid project-library interactions RPL

′ to optimize the
TPL prediction. The generation of RPL

′ is the same as the
generation of R′ in the previous step. PyRec minimizes the
following prediction loss:

Lpre =
∑

∀(p,l,l′)∈R∗

−lnσ

(
û(l, p)− û(l′, p)

)
(10)

where R∗ = {(p, l, l′)|(p, 1, l) ∈ RPL, (p, 1, l
′) ∈ RPL

′}.

4 EXPERIMENTAL EVALUATION

PyRec is designed to facilitate the project development for
Python community. Specifically, it employs the DL-based
mechanisms to automate developers’ TPL seeking process.
It is necessary to experimentally study the effectiveness
of PyRec, i.e., if PyRec could perform better than state-
of-the-art approaches. Second, considering that the scales
of different Python projects in terms of TPL usage vary
significantly, it is also of importance to explore the adapt-
ability of PyRec to projects with different scales. Third,
PyRec is the first approach that employs contextual infor-
mation to make TPL recommendations. It also employs an
attention mechanism to help automatically determine the
importance of different kinds of information to the model.
Thus, we conduct ablation studies to analyze the usefulness

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 7

of incorporating contextual information and the adoption of
attention mechanism. After that, we want to study how to
choose the most suitable parameters for PyRec in practice.
Therefore, the following five research questions are used to
guide the experimental evaluation of PyRec’s effectiveness.

RQ1: Does PyRec perform better compared with existing state-
of-the-art approaches?

RQ2: Does PyRec perform well with Python projects of differ-
ent scales?

RQ3: Is contextual information useful for improving TPL
recommendation performance?

RQ4: Is attention mechanism useful for improving TPL rec-
ommendation performance?

RQ5: How do PyRec’s hyperparameter settings affect the rec-
ommendation performance?

4.1 Experimental Setup

4.1.1 Dataset
Through a thorough investigation, we found that there is no
benchmark dataset available, so we collected the dataset by
adopting the following methodologies.

Project-TPL Usage Information Collection. We resort
to the official GitHub API [40] to collect real-world Python
projects. By setting the primary language to Python and
excluding forked ones, we obtain around 13,000 projects.
To collect TPLs for our research, we automatically retrieved
TPLs from the official PyPI [4] repository. After removing
the duplicates, we obtain around 6,000 TPLs for further
analysis. Then, we leverage the static analysis framework
Scalpel [23] to extract TPL usage information from collected
Python projects. The advantage of Scalpel is that it can
extract imported Python module names from the source
code and exclude the standard modules and local modules.
The top-level module names are used to extract used TPLs,
similar to [41].

Contextual Information Collection. First, we retrieve
the topic keywords of those Python projects when collect-
ing them from GitHub. Those keywords are generated by
GitHub and chosen by developers, and thus can accurately
describe the corresponding projects. Second, we collect topic
keywords, authors, and dependencies of each TPL from its
installation wheel file. Please note that the above contextual
information is publicly available and can be collected with-
out knowing the usage status of a library. For example, once
a library is available on PyPI, the corresponding contextual
information like author name, description, dependencies,
etc., can be easily collected and then used by PyRec.

Dataset Creation. Similar to [15], [19], we employ
projects invoking 5 or more TPLs to conduct the eval-
uation. In total 121,474 project-library interaction records
involving 12,421 projects and 963 distinct TPLs are used in
the experiments. Besides, the dataset has 73,277 pieces of
contextual records involving 9,675 extra entities like authors
and keywords. As introduced in Section 3.1, the application
scenario of PyRec is that developers have decided on a few
TPLs for their Python projects and are seeking more new
TPLs. Please note that from the programming perspective,
there is no specific sequence for the TPL usage, i.e., if two

TPLs are used by a project, developers can incorporate any
of the two TPLs in the source code first, and then include
the other one. The study of version evolution is out of the
scope of this paper and will be studied in the future. In this
paper, following the same experimental settings in [6], [15],
[18], [19], we randomly remove rm TPLs in each Python
project to mimic that some TPLs have been determined
but some new TPLs are still needed. In addition, a project
could be at different development stages. There is usually
a limited number of TPLs used in a project at the early
development stage, but more TPLs can be included when
the development is nearly completed. To mimic such a real-
world scenario, for each project in the dataset, we set rm ∈
{20%, 40%, 60%} TPLs. Here rm = 60%meansonly40%4
of TPLs have been determined and the developer wants to
add 60% new TPLs (the removed ones in the experiments)
to her/his project. This also indicates the project is at
an early development stage. Similarly, rm=20% means the
project is nearly completed and only 20% extra TPLs are
needed. To generate the recommendation, we run PyRec to
recommend a list with n ∈ {5, 10, 20} TPLs. We investigate
PyRec’s performance by comparing those removed TPLs
with those recommended TPLs. In this way, the removed
TPLs constitute a test set and the remaining TPLs constitute
a training set, the same as the settings in [6], [15], [18], [19].
Furthermore, as our PyRec uses contextual information to
make recommendations, if a TPL is removed from a project,
the relevant contextual information will also be removed
from the training set accordingly. For ease of exposition, we
call those TPLs kept in the test set as correct TPLs hereafter
as the developers have used them eventually. The threats
brought by the above settings will be discussed later in
Section 4.7.

4.1.2 Implementation
We prototype PyRec in Python based on the state-of-the-
art neural recommender system - KGAT [33]. However, we
further improved KGAT to allow PyRec to utilize contextual
information at both project and TPL sides. Besides, we im-
proved KGAT to allow PyRec to support TPL dependencies
which introduce new edges to KG without bringing new
entities. For the other competing approaches [6], [15], [18],
[19], we simply run their open-source codes with the Python
dataset.

By default, we set the dimensionality of node embed-
dings d = 128, the dimensionality of relation embeddings
k = 64, the number of GNN layers m = 2, and the size
of each layer size s = 64 in PyRec. We adopt Adam [39]
to adaptively adjust the learning rate. We keep the original
parameters for the other competing approaches. The testbed
is equipped with NVIDIA P100 12GB PCIe GPU accelerator.
It runs Ubuntu 18.04, CUDA 10.2, Python 3.7.5, Torch 1.11.0,
NumPy 1.21.5, pandas 1.3.5, SciPy 1.4.1, tqdm 4.64.0, and
scikit-learn 0.22.

4.1.3 Metrics
Our objective is to propose an innovative approach to help
Python developers effectively identify the most suitable
TPLs. Therefore, we employ the first four metrics to evaluate
PyRec’s ability to recommend libraries accurately. Besides,
we employ the last metric to measure PyRec’s ability to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 8

TABLE 1
Performance Comparison. Data with underlines are the best performance achieved by existing approaches.

Dataset Approaches
n=5 n=10 n=20

MP MR MF MRR Cov MP MR MF MRR Cov MP MR MF MRR Cov Ave. Adv.

rm=20%

LibRec 0.0819 0.2362 0.1216 0.2682 0.2669 0.0607 0.3731 0.0980 0.2850 0.2735 0.0332 0.3907 0.0583 0.3162 0.3089 39.51%
CrossRec 0.0305 0.1136 0.0457 0.0723 0.1268 0.0262 0.1888 0.0442 0.0847 0.1458 0.0231 0.3333 0.0421 0.0964 0.1549 210.74%
LibSeek 0.0985 0.3318 0.1418 0.2952 0.2847 0.0653 0.4291 0.1073 0.3092 0.3297 0.0413 0.5317 0.0739 0.3163 0.3765 18.60%
GRec 0.0968 0.3394 0.1418 0.2926 0.3836 0.0645 0.4328 0.1074 0.3079 0.4593 0.0412 0.5390 0.0741 0.3153 0.5542 10.48%
PyRec 0.1106 0.3781 0.1711 0.3276 0.3857 0.0724 0.4844 0.1259 0.3424 0.4609 0.0405 0.5926 0.0845 0.3495 0.5553 69.83%

rm=40%

LibRec 0.1497 0.2297 0.1672 0.3883 0.2778 0.0907 0.2616 0.1240 0.3932 0.2867 0.0497 0.2716 0.0781 0.3936 0.3186 64.60%
CrossRec 0.0528 0.0912 0.0631 0.1279 0.1547 0.0522 0.1738 0.0759 0.1481 0.1965 0.0487 0.3286 0.0816 0.1651 0.2144 197.46%
LibSeek 0.1675 0.2654 0.1907 0.4203 0.2979 0.1169 0.3598 0.1646 0.4359 0.3488 0.0774 0.4647 0.1256 0.4427 0.3915 29.59%
GRec 0.1089 0.1928 0.1321 0.2680 0.4164 0.0804 0.2755 0.1184 0.2855 0.4968 0.0580 0.3798 0.0965 0.2951 0.5834 62.38%
PyRec 0.2111 0.3438 0.2616 0.5174 0.4215 0.1438 0.4549 0.2184 0.5312 0.4994 0.0926 0.5679 0.1591 0.5366 0.5852 88.51%

rm=60%

LibRec 0.1246 0.1226 0.1138 0.3249 0.3279 0.0731 0.1353 0.0862 0.3268 0.3374 0.0396 0.1388 0.0561 0.3269 0.3443 158.08%
CrossRec 0.0680 0.0738 0.0667 0.1290 0.2488 0.0880 0.1893 0.1133 0.1611 0.3032 0.0731 0.3245 0.1145 0.1768 0.3906 188.40%
LibSeek 0.1705 0.1801 0.1643 0.3925 0.3507 0.1318 0.2715 0.1660 0.4094 0.4041 0.0887 0.3561 0.1340 0.4148 0.4219 59.23%
GRec 0.1401 0.1578 0.1410 0.3178 0.5053 0.1039 0.2271 0.1350 0.3344 0.5721 0.0749 0.3154 0.1152 0.3432 0.6458 73.91%
PyRec 0.2862 0.3063 0.2959 0.6122 0.5331 0.2014 0.4196 0.2721 0.6229 0.6043 0.1320 0.5324 0.2116 0.6265 0.6781 119.91%

recommend diverse TPLs. All metrics are widely used by
researchers in not only the SE community but also the
recommender system community. Greater values for each
metric indicate better performance.

• Mean Precision (MP) [6], [15], [42]: Given a list consisting
of n TPLs, the precision is calculated by dividing the
number of correctly recommended TPLs by n. Then, MP
averages all precisions in an experimental run.

• Mean Recall (MR) [6], [15], [16], [18]: The recall is calcu-
lated by dividing the number of correctly recommended
TPLs in a list by the number of removed TPLs from the
corresponding project. Then, MR averages the recalls of
all lists in an experimental run.

• Mean F1 Score (MF) [15], [19]: MF averages the F1-
scores of all lists in an experimental run. An F1-score is
calculated with the precision and recall of a list.

• Mean Reciprocal Rank (MRR) [6], [19]: MRR measures
the ability of each approach to put correct TPLs at higher
positions in the recommendation list. Specifically, given a
set of recommendation lists RL, the MRR is calculated by:

MRR =
1

|RL|
∑

∀rl∈RL

1

c(i)
(11)

where c(i) is the position of the first correct TPL in the
current recommendation list rl. Considering the fact that
developers usually evaluate those recommended TPLs
sequentially from top to bottom, a recommendation ap-
proach with higher MRR is much more useful in practice.

• TPL Coverage (COV) [6], [15], [19]. In one experimental
run, COV is the ratio of distinct TPLs in all recom-
mendation lists over the total number of distinct TPLs
contained in the dataset. A greater value of COV indi-
cates a higher probability that the approach recommends
inventive TPLs. Note that inventive TPLs may not be
correct TPLs and thus COV is irrelevant to accuracy.
However, it can be used to check if an approach achieves
better accuracy but significantly scarifies the diversity of
recommended TPLs.

For each group of parameter settings, we conduct 50
experimental runs and report the averaged performance.

4.2 Performance Comparison (RQ1)
To answer the research question RQ1, we compare PyRec
against four state-of-the-art approaches.
• LibRec [18]: It is the first TPL recommendation approach.

It combines CF and association rule mining to recommend
useful TPLs for Java projects.

• CrossRec [6]: It is a CF-based approach designed for open-
source Java projects.

• LibSeek [19]: It is an MF-based TPL recommendation
approach facilitating Android app development.

• GRec [15]: This is a DL-based approach designed for
Android app development. It models the app-library in-
teractions as a BG and employs GNN to distill information
for TPL recommendations.

We simulate different development stages of Python
projects by setting parameter rm to 20%, 40%, and 60%, re-
spectively [6]. This means the developers have decided 80%,
60%, and 40%, respectively, of the TPLs for their Python
projects and are seeking more TPLs for use. Then, given a
Python project, each approach gives out a recommendation
list consisting of n TPLs. In practice, the recommendation
list could not be too long [15], [19], so we set n to 5, 10, and
20, respectively. Table 1 reports the performance of all com-
peting approaches. Please note that the minimum advantages
(Min. Adv.) are calculated by comparing PyRec with the
best performance achieved by state-of-the-arts (underlined).
Besides, the average advantages (Ave. Adv.) are calculated by
comparing PyRec with each of the competing approaches.

The first observation is that PyRec achieves the best
performance in every case. On average across all cases,
PyRec outperforms LibRec, CrossRec, LibSeek, and GRec by
90.67%, 181.30%, 31.18%, and 60.42% in MP, by 113.11%,
164.39%, 32.29%, and 52.65% in MR, and by 111.50%,
191.74%, 39.00%, and 66.04% in MF, respectively. This
demonstrates PyRec’s superior performance in recommend-
ing more correct TPLs for Python projects. Besides, PyRec
outperforms LibRec, CrossRec, LibSeek, and GRec by
74.12%, 165.38%, 48.94%, and 3.69% in COV, respectively.
This demonstrates that PyRec does not scarify the diversity
of recommended TPLs while achieving higher accuracy
than those state-of-the-art approaches. Moreover, compared

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 9

Fig. 5. Impact of Project Scales (rm = 40%, n = 5)

with LibRec, CrossRec, LibSeek, and GRec, PyRec’s aver-
age advantages in MRR are 47.58%, 291.52%, 28.62%, and
61.82%, respectively. This demonstrates PyRec’s capability
of putting those correct TPLs at higher positions in the
recommendation lists. This is more helpful for developers
as it helps prioritize the evaluation of useful TPLs and
subsequently saves developers’ TPL-seeking efforts.

The second observation is that along with the increase in
n, the MR, MRR, and COV of PyRec increase accordingly.
Taking rm = 20% as an example, when n increases from 5
to 20, the MR of PyRec increases from 0.3781 to 0.5926 by
56.72%, the MRR increases from 0.3276 to 0.3495 by 6.69%,
and the COV increases from 0.3875 to 0.5553. When n is
larger, more TPLs are included in each recommendation list.
Therefore, PyRec has a higher probability to recommend
not only correct TPLs but also inventive TPLs, which leads
to an increase in MR, MRR, and COV. However, with a
larger n, developers may spend more time testing those
recommended TPLs. In practice, the more suitable value of
n can be empirically set up according to developers’ needs.

The third observation is that when rm increases, MP, MF,
and MRR of PyRec increase accordingly. Given a Python
project, a greater rm means that fewer TPLs have been de-
cided by developers and more new TPLs are expected. Then,
TPLs in a recommendation list have a higher probability to
be the correct ones. This leads to an increase in MP, MF, and
MRR. However, when more TPLs are expected, it is harder
for PyRec to include all those correct TPLs in a list with a
fixed length. As a result, its MR decreases slightly.

Interestingly, compared with nearly completed projects
(rm = 20%), PyRec achieves significant advantages when
recommending TPLs for projects at earlier stages (rm =
60%). For example, when rm = 20%, PyRec’s overall
advantage is 69.83% on average across all cases. When rm
increases to 60%, PyRec’s overall advantage increases to
119.91%. The reason is that when rm increases, fewer TPLs
are kept in the training set. Subsequently, less information
can be utilized for recommendation by those approaches.
This limits their performance. In contrast, PyRec is the
only approach that can utilize contextual information to
supplement TPL recommendations. This observation evi-
dences our statement made in Section 1 that incorporating
contextual information in TPL recommendation is useful.

The above observations demonstrate PyRec’s suitability
for Python projects not only nearing completion (e.g., rm =
20%) but also at early development stage (e.g., rm = 60%).

4.3 Adaptability to Projects Scales (RQ2)

Now we investigate PyRec’s adaptability to projects with
different scales. We split those Python projects into three
categories according to the total number of TPLs used.

The first category consists of projects using 5 to 7 TPLs,
the second category consists of projects using 8-12 TPLs,
and the last category consists of projects using more than
12 TPLs. Each category has a similar number of project-
library interactions. As reported in Table 1, LibSeek has the
best performance across all existing approaches. Thus, we
employ LibSeek only for comparison. The results are shown
in Fig. 5.

We can observe that the project scales significantly im-
pact the performance of both PyRec and LibSeek. For ex-
ample, in the first category where each project has 5 to
7 TPLs, PyRec achieves 0.1496 in MP. In contrast, in the
third category where each project has more than 12 TPLs,
PyRec’s MP increases to 0.3314 by 221.47%. The reasons are
two folds. First, as we remove 40% TPLs from each project
as the test set, the theoretical up-bound of MP in the first
category is 0.40 [19]. This up-bound is looser in the other
two categories. Second, projects in the first category have
relatively less TPL usage information. Compared with the
second and third categories, it is harder to make accurate
recommendations.

An interesting finding is that PyRec achieves the greatest
advantage over LibSeek in the first category. Specifically,
PyRec outperforms LibSeek by 24.65%, 19.14%, and 15.10%
on average across the three categories. Because when a
project invokes fewer TPls, less information can be utilized
by LibSeek to make recommendations. This also demon-
strates PyRec’s ability to make accurate TPL recommen-
dations with limited TPL usage information, as it can use
contextual information as a supplement.

Another finding is that along with the increment of
project scales, the COVs achieved by both approaches de-
crease accordingly. The reason is that when we fix rm =
40%, a project with more TPLs will have more TPL usage
information for the recommendation. Subsequently, each
approach can make more accurate recommendations with
fewer random TPLs included in the lists. As a result, the
values of COV metric decrease. The last finding is that when
the project scale becomes bigger, the advantage of PyRec
over GRec in COV becomes smaller. This further evidences
the observation reported in Table 1, i.e., PyRec is more useful
for projects at early development stage.

4.4 Usefulness of Contextual Information (RQ3)

We conduct an ablation study to get deep insights into the
effectiveness of utilizing contextual information. Indeed, the
utilization of contextual information is one of the major
differences between PyRec and GRec [15]. Specifically, we
disable the attention mechanism (to avoid bias) defined by
Eq.s (3) and (5). Then, we run PyRec without contextual
information, denoted as PyRecc0, and with contextual infor-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 10

Fig. 6. Impact of Contextual Information (n = 5)

0.1753
0.1931

0.2882
0.3121

0.2180
0.2386

0.3968

0.4470

0.5509

0.4215

MP MR MF MRR COV
0.1

0.2

0.3

0.4

0.5
PyRec

a0

PyRec
a1

Fig. 7. Impact of Attention Mechanism (rm = 40%, n = 5)

mation, denoted as PyRecc1, separately. Fig. 6 depicts the
final results when n = 5 and rm increases from 20% to 60%.

We can observe that the utilization of contextual infor-
mation significantly boosts PyRec’s performance in terms
of recommendation accuracy. For example, PyRecc1 outper-
forms PyRecc0 by 8.92%, 21.17%, 21.34% on average when
rm = 20%, 40% and 60%, respectively. This evidences the
statement made earlier in Section 1 that contextual infor-
mation needs to be considered when recommending TPLs
for Python projects. Second, the advantages of PyRecc1 over
PyRecc0 increase when rm increases. This indicates that con-
textual information is much more useful for Python projects
at the early development stage where a limited number
of TPLs have been decided/used. This observation also
confirms the findings shown in Table 1 that the advantage of
PyRec over the other competing approaches becomes more
significant when rm increases. Because all those approaches
except PyRec used only project-library interaction informa-
tion to make recommendations. When rm increases, less
project-library interaction information is available for use,
and their performance is highly constrained. In contrast,
PyRec can use contextual information as a supplement when
making recommendations, and thus it can have a much
better performance.

Interestingly, the COV of PyRec is slightly lower than
PyRecc1. A potential reason is that when contextual infor-
mation is incorporated into the model, PyRec could make
more accurate TPL recommendations, and thus fewer fresh
TPLs are included in the lists.

4.5 Usefulness of Attention Mechanism (RQ4)

Now we investigate whether the adoption of attention
mechanisms in Section 3 (Eq.s (3) and (5)) can improve
PyRec’s performance. Similar to the settings in the previous
section, we disable the usage of contextual information
to avoid bias. Then, we change Eq. (3) to wr(h, t) = ert
and change Eq. (5) to e1h = LeakyReLU

(
M2(eh + eN (h))

)
to disable the attention mechanisms. We denote the new
approach without attention mechanisms as PyReca0 and
the approach with attention mechanisms as PyReca1. Fig. 7
shows the experimental results when rm = 40% and n = 5.

We can find that PyReca1 outperforms PyReca0 by
10.12%, 8.28%, 9.42%, and 12.64% in MP, MR, MF, and

MRR, respectively. Because attention mechanisms can au-
tomatically formulate the importance of different neighbor
nodes when gathering information for a target node in KG.
This helps amplify useful information possessed by neigh-
bor nodes and filter out useless information. As a result,
PyReca1 achieves much better performance. This observa-
tion evidences the effectiveness of attention mechanisms
designed in Section 3. Similar to the phenomena observed
in Fig. 6, PyReca0 performs better in COV than PyRec. The
underlay reason is also the same.

4.6 Impact of PyRec’s Hyperparameters (RQ5)
PyRec embeds both nodes (including Python project nodes,
TPL nodes, and extra entity nodes) and edges (relations
between nodes) in KG to latent space to capture their
characteristics. Now we study the impact of different hy-
perparameters on PyRec’s performance to answer research
question RQ5.

Relation Embedding Dimensionality (k). We vary k to
study its impact on PyRec’s performance. Specifically, we
set k to 16, 32, and 64 in PyRecr1, PyRecr2, and PyRecr3, re-
spectively. Fig. 8 reports the average performance achieved
by each approach when rm = 40% and n = 5.

We can find that along with the increase of k, PyRec’s
recommendation accuracy becomes better in all cases. For
example, compared with PyRecr1 in which k = 16, PyRecr2
improves the performance by 1.18%, 1.07%, 1.14%, and
0.57% in MP, MR, MF, and MRR, respectively. When k = 64,
PyRecr3 outperforms PyRecr2 by 7.00%, 6.52%, 6.82%, and
9.03% in MP, MR, MF, and MRR, respectively. The reason
is that a higher dimensionality of the relation embeddings
allows PyRec to model more latent features for the corre-
sponding relationships. Subsequently, more latent features
allow PyRec to reflect the relations between each pair of
nodes in KG more precisely. As a result, PyRec can rec-
ommend correct TPLs more effectively. In contrast, when
k increases from 16 to 64, the value of COV decreases from
0.5395 to 0.4215 by 21.87%. Please note that a greater k also
results in higher time consumption and more storage space.
Thus, a proper value of k can be experimentally identified
in practice.

Node Embedding Dimensionality (d). Now, we vary d
to 32, 64, and 128, to study its impact on the performance of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 11

Fig. 8. Impact of Relation Embedding Size (k) (rm = 40%, n = 5)

Fig. 9. Impact of Node Embedding Size (d) (rm = 40%, n = 5)

1 2 3 4

layers m

0.1

0.15

0.2

0.25

M
P

0.1308

0.2111

0.1774

0.1753

1 2 3 4

layers m

0.2

0.25

0.3

0.35

M
R

0.2189

0.3438

0.2905

0.2882

1 2 3 4

layers m

0.15

0.2

0.25

M
F

0.1637

0.2616

0.2202

0.2180

1 2 3 4

layers m

0.2

0.3

0.4

0.5

M
R

R

0.2808

0.5174

0.3980

0.3968

1 2 3 4

layers m

0.2

0.3

0.4

0.5

0.6

C
O

V

0.2731

0.4215

0.5459

0.5624

Fig. 10. Impact of Number of GNN Layers (m) (rm = 40%, n = 5)

PyRec. We denote the three derived approaches as PyRecn1,
PyRecn2, and PyRecn3 in which d is 32, 64, and 128, respec-
tively. The experimental results are reported in Fig. 9.

Similar to the phenomena observed before, a greater
value of d results in better performance in MP, MR, MF, and
MRR but COV. For example, PyRecn2 outperforms PyRecn1
by 7.45%, 7.43%, 7.44%, and 8.23% in MR, MR, MF, and
MRR, respectively. Furthermore, compared with PyRecn2,
PyRecn3’s advantages increase to 20.57%, 19.50%, 20.16%,
and 30.78%, respectively. As introduced in Section 3.3, the
embeddings of TPL nodes represent latent characters of
those TPLs, such as functionality, performance, popularity,
compatibility, reliability, interface, etc. The embeddings of
Python project nodes represent how much they are in-
terested in each feature. Therefore, a greater d allows a
more accurate formulation of those characters and interests.
Similarly, when d increases from 32 to 64, the value of COV
increases accordingly. However, when d further increases
from 64 to 128, the value of COV decreases slightly.

By comparing Fig.s 8 and 9, we can also observe that the
node embedding dimensionality d has a more significant
impact on PyRec’s performance than the relation embed-
ding dimensionality k.

Number of GNN Layers (m). As introduced in Section
3.4, PyRec uses the m-th GNN layer to capture information
for target node from its m-hop neighbors in KG. Now we
vary m from 1 to 4 to study the impact of m on PyRec’s
performance, as shown in Fig. 10.

We can find that when m increases from 1 to 2, PyRec’s
recommendation accuracy increases rapidly, i.e., by 61.43%,
57.08%, 59.78%, and 84.27% in MP, MR, MF, and MRR,
respectively. This evidences the effectiveness of capturing
multi-hop information to facilitate the TPL recommenda-

tion, similar to [15]. Note that m = 2 is enough to capture
all the contextual information as shown in Fig. 2. When
m continues to increase, PyRec’s performance decreases
slightly, as an overly large m will include unnecessary noise
that undermines GRec’s accuracy. However, incorporating
noisy information is beneficial for improving COV. Those
fresh TPLs have a higher probability to be included in a
recommendation list. As a result, the value of COV increases
along with the increment of m.

Size of GNN Layers (s). Now we vary the GNN layer
size s from 16 to 128 exponentially to study how it impacts
PyRec’s performance. As shown in Fig. 11, when s increases
from 16 to 64, PyRec’s recommendation accuracy increase
rapidly. For example, the MP is 0.1835 when s = 16, and in-
creases to 0.2111 by 15.06% when s = 64. This demonstrates
that a greater s allows GNN to distill information more
effectively. When s increases further, PyRec’s performance
decreases slightly, similar to the phenomena observed in Fig.
10. In contrast, the COV decreases when s increases from 16
to 64 but increases when s increases from 64 to 128. The
reasons are similar and thus are omitted here. In practice,
the optional s and m can be experimentally determined.

4.7 Threats to Validity
Internal Threats. The first threat comes from the dataset
scale. Given the huge number of available projects and
TPLs, we employed 12,421 projects and 963 distinct TPLs in
the experiments, which may lead to bias. However, we col-
lected 6,000 of the most popular TPLs for TPL usage analysis
and randomly collected 13,000 Python projects published in
the past 5 years. Therefore, the bias may exist but is not sig-
nificant. The second thread comes from the implementation
of PyRec and other competing approaches. To minimize this

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 12

Fig. 11. Impact of GNN Layer Size (s) (rm = 40%, n = 5)

thread, we made PyRec publicly available for the purpose of
validation and reproduction of the experimental results. In
addition, we used the original source codes and parameter
settings of those competing approaches for comparison.
The third threat comes from the correctness of the dataset.
To mitigate this threat, we collected and manually filtered
13,000 Python projects from GitHub. Then, we employed
a publicly available tool - Scalpel [23] - to extract the TPL
usage information from each project. We also manually
inspected the contextual information collected from GitHub
and PyPI. Therefore, this threat has been minimized.

External validity. The main threat to the external validity
comes from whether the PyRec proposed in this paper
can be generalized to solve the TPL recommendation prob-
lems for applications developed in other programming lan-
guages. Although PyRec is a generalized TPL recommenda-
tion tool, we only conducted experimental evaluations with
Python projects and Python TPLs. However, we employed
four state-of-the-art approaches for comparison in the ex-
periments. Those approaches were designed to solve the
TPL recommendation problems for Java projects [18], open-
source projects [6], and Android mobile app development
[15], [19], respectively. The results reported in Table 1 show
that PyRec has a significant advantage over those state-of-
the-art approaches. We have also varied many parameters
like rm and n to mimic different development scenarios to
comprehensively evaluate PyRec’s performance. Therefore,
the threat exists but could not be significant. The second
threat comes from that we did not repeat the user study to
verify the usefulness of TPL recommendation for software
development. However, preliminary studies [15], [19] have
conducted comprehensive user studies and the usefulness
of recommending TPLs for software development has been
widely acknowledged by developers. We also take the two
studies for comparison in the experiments. Therefore, the
threat has been minimized.

Construct validity. The main threat comes from the four
approaches used for comparison in the experiments. Cross-
Rec [6] and LibSeek [19] can utilize the direct project-library
interaction information. GRec can utilize higher-order in-
teractions but cannot make use of contextual information.
Therefore, their TPL recommendation performance tends to
be lower than PyRec. To minimize this threat, we varied
many parameters like rm, n, k, d, m and s to comprehen-
sively evaluate PyRec’s performance in different scenarios.
Thus, this threat exists but is not significant. The second
threat comes from the lack of project evolution information
in the dataset. Almost all projects in the dataset are unique.
If such evolution information is available, we can further
investigate if a TPL recommended based on the current
project will be used by its later versions. This can be used to

supplement the experimental evaluation. However, as each
project uses multiple TPLs at the same time, we followed
the same settings in [6], [15], [18], [19] to conduct the
experiments, i.e., randomly removing a specific portion of
those TPLs and making recommendations based on the rest
of TPLs. This simulates the practical development scenario
where developers have determined part of TPLs and are
seeking more TPLs for their projects. Indeed, the lack of evo-
lution information will not affect the mechanism of PyRec.
Therefore, the lack of project evolution information has a
threat to the construct validity but will not be significant.

Conclusion validity. The first threat comes from the
conclusion we made that PyRec can achieve high perfor-
mance due to its ability to utilize both project-library inter-
action information and contextual information. The second
threat comes from the conclusion we made that PyRec can
achieve high performance due to the application of the
attention mechanism in the GNN model. To minimize these
two threats, we conducted a series of ablation studies by
removing contextual information and/or attention mecha-
nism, as shown in Section 4.4 and Section 4.5, respectively.
This allows us to inspect PyRec’s TPL recommendation
performance with and without contextual information and
attention mechanism. The last threat comes from the way
we model the TPL usefulness. Following the same settings
in [6], [15], [18], [19], we assume only TPLs in the test set
are useful for the corresponding Python projects. However,
TPLs beyond the test set may be also of interest. However,
this will not scarify the performance reported in this paper.
Therefore, this threat is not significant.

5 RELATED WORK

In recent years, recommendation technique has been widely
adopted to facilitate software development and evolution,
such as defect identification [43], developer recommenda-
tion [44]–[47], API/code snippet recommendation [32], [48],
third-party library recommendation [15], [19], permission
recommendation [49], etc. Among them, our work is closely
related to API recommendations and TPL recommenda-
tions. Besides, our work also is related to studies on Python
libraries.

API Recommendation. Many approaches have been
proposed to improve developers’ coding efficiency by sug-
gesting suitable APIs for use [50]–[53]. For example, given
a request with feature descriptions, Thung et al. recom-
mended APIs that can implement such features based on
APIs’ textual descriptions [50]. Huang et al. focused on
mapping descriptions of developers’ demands to APIs’
structured descriptions when seeking useful APIs [51]. He et
al. proposed a random forest-based approach to recommend

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 13

APIs based on data flow, token similarity, and token co-
occurrence in Python [24]. Nguyen et al. employed a CF-
based recommendation technique to find useful APIs for
open-source projects [42]. Zhao et al. proposed APIMatch-
maker to recommend APIs for Android app development
[32]. To improve the recommendation accuracy, Liu et al.
recommended APIs based on the API usage paths distilled
from function call graphs [53]. Similarly, Xie et al. rec-
ommended new APIs by distilling hierarchical contextual
information from the project’s call graph [52]. Wu et al.
proposed a neural framework leveraging multi-model fu-
sion and multi-task learning techniques to recommend Web
APIs [54]. Gong et al. [55] proposed DAWAR to improve
the diversity and compatibility of recommended Web APIs.
Different from the above work, PyRec recommends entire
TPLs rather than specific program snippets or APIs.

TPL Recommendation. Many TPL usage patterns have
been identified in recent years [11], [16], [56], which has
created a foundation for TPL recommendation. Thung et
al. made the first attempt at recommending TPLs for Java
projects via combined association rule mining and CF [18].
Nguyen et al. employed solely CF to recommend TPLs for
open-source Java software [6]. Later, He et al. proposed an
MF-based approach to recommend TPLs for Android app
development while diversifying the recommended TPLs
[19]. Very recently, Li et al. employed GNN to recommend
TPLs for Android app development based on the app-
library graph [15]. However, all of the above approaches
utilize only the TPL usage information to find useful TPLs.
Different from them, our PyRec makes recommendations
based on not only TPL usage information but also contex-
tual information. It employs KG to model the heterogeneous
relations between different entities and uses GNN to distill
useful information from the graph. This takes a giant step
out to advance TPL recommendation performance.

Python Library Studies. Recent studies on Python li-
braries have mainly focused on TPL/API evolution [2],
[3], [22] and TPL dependency analysis [57]–[60]. To name
a few, He et al. studied the TPL migration problem and
proposed a novel approach that utilizes TPL characteristics
like rule support, message support, distance support, and
API support to rank TPLs and recommend migration so-
lutions [61]. Zhang et al. investigated the API evolution in
Python libraries and detected compatibility issues caused
by such API evolution [3]. They proposed PYCOMPAT
to automatically detect compatibility issues caused by the
misuse of evolved APIs. Similarly, Wang et al. investigated
how the deprecated APIs are declared in Python libraries
and handled in Python projects [2]. Rubei et al. [22] inte-
grated end-user feedback to recommend developers with
TPL evolution suggestions, i.e., whether to keep or dis-
card a used TPL. Cheng et al. modeled relations of TPLs
into a KG to infer compatible runtime environments [41].
Wang et al. studied the TPL dependency issues in Jupyter
Notebooks [58]. They presented SnifferDog to automatically
restore the execution environment for Jupyter Notebooks
based on TPL usage analysis. Ye et al. proposed PyEGo
to automatically infer dependencies between not only TPLs
but also Python interpreter and system libraries [59]. Ying et
al. proposed Watchman to automatically detect dependency

conflicts among Python TPLs for the PyPI ecosystem [60].
The above studies on TPL dependency supplement PyRec
with plentiful contextual information.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed innovative PyRec to facilitate
the development of software projects. PyRec helps relieve
developers’ burden incurred by seeking new TPLs for their
projects. Unlike previous approaches that employ solely
existing TPL usage information to make recommendations,
PyRec leverages both TPL usage information and contextual
information by encoding them into a knowledge graph.
This enables PyRec to gather more information via GNN
to make more accurate recommendations. More domain-
specific techniques like attention mechanism are also in-
corporated in PyRec to further burst its performance. The
experimental results on 12,421 Python projects demonstrate
the superior performance of PyRec.

In the future, we will explore the possibility of recom-
mending TPL updates for software applications, e.g., giving
TPL update suggestions and/or TPL migration suggestions.

REFERENCES

[1] “Top programming languages 2021,” https://spectrum.ieee.org/
top-programming-languages/, accessed: 2023-05-30.

[2] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated
Python library APIs are (not) handled,” in the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2020, pp.
233–244.

[3] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong, “How
do Python framework APIs evolve? An exploratory study,” in
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 81–92.

[4] “PyPI - the Python package index,” https://pypi.org/, accessed:
2023-05-30.

[5] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo, “Why reinvent-
ing the wheels? An empirical study on library reuse and re-
implementation,” Empirical Software Engineering, vol. 25, no. 1, pp.
755–789, 2020.

[6] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di Penta,
“CrossRec: Supporting software developers by recommending
third-party libraries,” Journal of Systems and Software, vol. 161, p.
110460, 2020.

[7] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and
H. Chen, “Detecting third-party libraries in Android applications
with high precision and recall,” in 25th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering, 2018, pp.
141–152.

[8] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in Android and its security applications,” in 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 356–367.

[9] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “LibD: Scalable and precise third-party library detection
in Android markets,” in 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), 2017, pp. 335–346.

[10] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and ac-
curate detection of third-party libraries in Android apps,” in 38th
International Conference on Software Engineering Companion (ICSE).
ACM, 2016, pp. 653–656.

[11] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using
multi-objective optimization,” Information and Software Technology,
vol. 83, pp. 55–75, 2017.

[12] M. Lamothe and W. Shang, “When APIs are intentionally by-
passed: An exploratory study of API workarounds,” in 42nd
International Conference on Software Engineering (ICSE), vol. 2020,
2020.

https://spectrum.ieee.org/top-programming-languages/
https://spectrum.ieee.org/top-programming-languages/
https://pypi.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 14

[13] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, and
Y. Liu, “Automated third-party library detection for Android ap-
plications: Are we there yet?” in The 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2020), 2020.

[14] T. Ki, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek, “Mimic: UI
compatibility testing system for Android apps,” in 41st Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2019, pp.
246–256.

[15] B. Li, Q. He, F. Chen, X. Xia, L. Li, J. Grundy, and Y. Yang,
“Embedding app-library graph for neural third party library rec-
ommendation,” in 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2021, pp. 466–477.

[16] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue, and D. Lo,
“Improving reusability of software libraries through usage pattern
mining,” Journal of Systems and Software, vol. 145, pp. 164–179, 2018.

[17] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM
Computing Surveys, vol. 52, no. 1, pp. 1–38, 2019.

[18] F. Thung, D. Lo, and J. Lawall, “Automated library recommenda-
tion,” in 20th Working Conference on Reverse Engineering (WCRE),
2013, pp. 182–191.

[19] Q. He, B. Li, F. Chen, J. Grundy, X. Xia, and Y. Yang, “Diversified
third-party library prediction for mobile app development,” IEEE
Transactions on Software Engineering, vol. 48, no. 1, pp. 150–165,
2022.

[20] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin,
“Incorporating contextual information in recommender systems
using a multidimensional approach,” ACM Transactions on Infor-
mation Systems, vol. 23, no. 1, pp. 103–145, 2005.

[21] “Topics on GitHub,” https://github.com/topics, accessed: 2023-
05-30.

[22] R. Rubei, C. Di Sipio, J. Di Rocco, D. Di Ruscio, and P. T. Nguyen,
“Endowing third-party libraries recommender systems with ex-
plicit user feedback mechanisms,” in IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2022, pp. 817–821.

[23] L. Li, J. Wang, and H. Quan, “Scalpel: The Python static analysis
framework,” arXiv preprint arXiv:2202.11840, 2022.

[24] X. He, L. Xu, X. Zhang, R. Hao, Y. Feng, and B. Xu, “PyART:
Python API recommendation in real-time,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 1634–1645.

[25] “torchaudio: An audio library for PyTorch,” https://github.com/
pytorch/audio, accessed: 2023-05-30.

[26] “Matplotlib: Visualization with Python,” https://matplotlib.org/,
accessed: 2023-05-30.

[27] “PyYAML,” https://pyyaml.org/, accessed: 2023-05-30.
[28] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based

recommender system: A survey and new perspectives,” ACM
computing surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[29] “PyTorchVideo: A deep learning library for video understanding
research,” https://pytorchvideo.org/, accessed: 2023-05-30.

[30] “scikit-sound: Python utilites for working with sound signals,”
https://pypi.org/project/scikit-sound/, accessed: 2023-05-30.

[31] “SQLAlchemy: The database toolkit for Python,” https://www.
sqlalchemy.org/, accessed: 2023-05-30.

[32] Y. Zhao, L. Li, H. Wang, Q. He, and J. Grundy, “APIMatchmaker:
Matching the right APIs for supporting the development of
Android apps,” IEEE Transactions on Software Engineering, vol. 49,
no. 1, pp. 113–130, 2022.

[33] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “KGAT: Knowl-
edge graph attention network for recommendation,” in 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 950–958.

[34] Z. Li, H. Liu, Z. Zhang, T. Liu, and N. N. Xiong, “Learning
knowledge graph embedding with heterogeneous relation atten-
tion networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 8, pp. 3961–3973, 2021.

[35] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,” in 29th
AAAI Conference on Artificial Intelligence, 2015.

[36] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[37] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in 26th International Conference on World
Wide Web (WWW), 2017, pp. 173–182.

[38] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2019, pp. 165–
174.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Poster of International Conference on Learning Representations
(ICLR), 2015.

[40] “Search - GitHub docs,” https://docs.github.com/en/rest/
search#search-repositories, accessed: 2023-05-30.

[41] W. Cheng, X. Zhu, and W. Hu, “Conflict-aware inference of
Python compatible runtime environments with domain knowl-
edge graph,” in 44th International Conference on Software Engineering
(ICSE). Association for Computing Machinery, 2022, p. 451–461.

[42] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule,
and M. Di Penta, “Focus: A recommender system for mining API
function calls and usage patterns,” in 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 1050–1060.

[43] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G.
Halfond, “ReCDroid: Automatically reproducing Android appli-
cation crashes from bug reports,” in 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 128–139.

[44] L. Ye, H. Sun, X. Wang, and J. Wang, “Personalized teammate
recommendation for crowdsourced software developers,” in 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing (ASE), 2018, pp. 808–813.

[45] L. Bao, X. Xia, D. Lo, and G. C. Murphy, “A large scale study
of long-time contributor prediction for github projects,” IEEE
Transactions on Software Engineering, 2019.

[46] D. Kong, Q. Chen, L. Bao, C. Sun, X. Xia, and S. Li, “Recom-
mending code reviewers for proprietary software projects: A large
scale study,” in IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2022, pp. 630–640.

[47] X. Xie, X. Yang, B. Wang, and Q. He, “DevRec: Multi-relationship
embedded software developer recommendation,” IEEE Transac-
tions on Software Engineering, vol. 48, no. 11, pp. 4357–4379, 2021.

[48] Y. Zhao, L. Li, X. Sun, P. Liu, and J. Grundy, “Icon2Code: Recom-
mending code implementations for Android GUI components,”
Information and Software Technology (IST), 2021.

[49] Z. Liu, X. Xia, D. Lo, and J. Grundy, “Automatic, highly accurate
app permission recommendation,” Automated Software Engineering,
vol. 26, no. 2, pp. 241–274, 2019.

[50] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recommen-
dation of API methods from feature requests,” in 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2013, pp. 290–300.

[51] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “API method
recommendation without worrying about the task-API knowledge
gap,” in 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE). IEEE, 2018, pp. 293–304.

[52] R. Xie, X. Kong, L. Wang, Y. Zhou, and B. Li, “HiRec: API
recommendation using hierarchical context,” in 30th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2019,
pp. 369–379.

[53] X. Liu, L. Huang, and V. Ng, “Effective API recommendation
without historical software repositories,” in 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering (ASE), 2018,
pp. 282–292.

[54] H. Wu, Y. Duan, K. Yue, and L. Zhang, “Mashup-oriented Web API
recommendation via multi-model fusion and multi-task learning,”
IEEE Transactions on Services Computing, vol. 15, no. 6, pp. 3330–
3343, 2021.

[55] W. Gong, X. Zhang, Y. Chen, Q. He, A. Beheshti, X. Xu, C. Yan, and
L. Qi, “DAWAR: Diversity-aware Web APIs recommendation for
mashup creation based on correlation graph,” in 45th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2022, pp. 395–404.

[56] M. A. Saied and H. Sahraoui, “A cooperative approach for com-
bining client-based and library-based API usage pattern mining,”
in 2016 IEEE 24th International Conference on Program Comprehension
(ICPC). IEEE, 2016, pp. 1–10.

[57] E. Horton and C. Parnin, “DockerizeMe: Automatic inference of
environment dependencies for Python code snippets,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 328–338.

[58] J. Wang, L. Li, and A. Zeller, “Restoring execution environments
of Jupyter notebooks,” in IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 1622–1633.

https://github.com/topics
https://github.com/pytorch/audio
https://github.com/pytorch/audio
https://pytorchvideo.org/
https://pypi.org/project/scikit-sound/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://docs.github.com/en/rest/search#search-repositories
https://docs.github.com/en/rest/search#search-repositories

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX , NO. XXX 15

[59] H. Ye, W. Chen, W. Dou, G. Wu, and J. Wei, “Knowledge-
based environment dependency inference for Python programs,”
in IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022, pp. 1245–1256.

[60] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S.-C.
Cheung, C. Xu, and Z. Zhu, “Watchman: Monitoring dependency

conflicts for python library ecosystem,” in ACM/IEEE 42nd Interna-
tional Conference on Software Engineering (ICSE), 2020, pp. 125–135.

[61] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, and M. Zhou, “A multi-metric
ranking approach for library migration recommendations,” in
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2021, pp. 72–83.

	Introduction
	Motivating Example
	PyRec Approach
	Process Overview
	Phase 1: Graph Generation
	Phase 2: Graph Embedding
	Phase 3: Information Distillation
	Phase 4: Embedding Aggregation
	Phase 5: TPL Prediction
	Optimization

	Experimental Evaluation
	Experimental Setup
	Dataset
	Implementation
	Metrics

	Performance Comparison (RQ1)
	Adaptability to Projects Scales (RQ2)
	Usefulness of Contextual Information (RQ3)
	Usefulness of Attention Mechanism (RQ4)
	Impact of PyRec's Hyperparameters (RQ5)
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

