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Android has become the most popular mobile platform with over 2.5 billion active users who use
many different languages across many different countries. In order for Android apps to be useable by
all of them, app developers usually need to add an internationalisation feature that adapts the app
to the users’ linguistic and cultural requirements. Such a process, including the translation from the
default language to up to thousands of languages, is usually achieved via manual efforts and hence is
resource-intensive, time-consuming, and error-prone. Automated approaches are hence in demand to
help developers mitigate such manual efforts. Since there are millions of apps proposed already for
Android users, we are interested in knowing to what extent internationalisation has been supported.
Our experimental results show that Android apps, at least the ones released on online markets, have
mostly been equipped with internationalisation features, with the number of supported languages
varies significantly. By mapping the actual term translations among different languages, we further
find that the translations tend to be consistent among different apps, suggesting the possibility to
learn from this data to achieve automated app internalisation. To explore this idea we implemented a
Transformer-based prototype approach Androi18n, that learns from developers’ practical translations to
achieve automated mobile app text translations. Experimental results show that Androi18n is effective
in achieving our objective, and its high performance is generic across the translations of different
languages.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Android, as the most popular Mobile Operating System (Anon,
020), very widely used since its first version released in Septem-
er 2008. As of May 2019, there are 2.5 billion active Android de-
ices worldwide. To date, there are more than 3 million Android
pps on the official Google Play store.
Among many reasons making Android a huge success in the

obile market, internationalisation (or i18n in short) is an im-
ortant one.1 Internationalisation enables the apps to be used
ith various languages and regions without engineering changes.

✩ Editor: Matthias Galster.
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This is achieved by preparing the code to load content from
multiple files representing supported usage locales. A toggle is
then used between different content and settings based on the
chosen locale (e.g., FR for French). This approach allows the app
to be smoothly used by users from different countries and regions
speaking different languages. While increasing the visibility of
the app, it also positively impacts the app’s install and usage
rate. As recently revealed by Infopulse,2 the largest number of
mobile users are located in India, Indonesia, South Africa, Turkey,
and China. Ignoring those languages could be the main reason
causing an app to be low-downloaded or low-rated. As disclosed
by the Common Sense Advisory Survey (Anon, 2019), users will
also have an emotional connection to the app that talks in their
mother tongue and hence will be more likely to choose apps
supporting their native languages.

2 https://medium.com/@infopulseglobal_9037/mobile-app-
nternationalization-ways-and-methods-to-boost-revenue-by-26-4f8985d3c4bd
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Internationalisation is the key to successfully spread Android
pps in the world. However, it is not clear how internationalisa-
ion is currently supported in practice in real-world Android apps.
he internationalisation rate of apps in the Android ecosystem
nd the number of languages supported by real-world Android
pps remain unclear for researchers and practitioners. It is also
nknown if the provided language translations are complete and
eliable for those apps that do have internationalisation feature.
o the best of our knowledge, this research direction has been
ittle explored by the research community.

To deepen our systematic knowledge of Android app inter-
ationalisation, we first conducted an exploratory study on the
nternationalisation status quo of real-world Android apps. Our
xperimental results reveal that existing apps, especially closed-
ource ones, are most likely to support internationalisation with a
ange of languages supported. We further looked into the interna-
ionalisation provided by Android apps and confirm that similar
erms have recurrently appeared in different Android apps, and
hose apps generally agree with each other when translating the
erms to other languages. This empirical evidence suggests that it
s possible to achieve automated Android app internationalisation
y learning from existing apps’ internationalisation contents.
There are, to the best of our knowledge, no existing works

onducted to help developers characterise internationalisation for
he development of Android apps. Each development team has
o rely on professional translators to implement dedicated inter-
ationalisation features for their apps, resulting in uncountable
fforts spent on repetitive yet boring tasks. Hence, we argue that
here is a strong need for inventing an automated Android app
nternationalisation approach that can liberate developers from
ompleting such labour-intensive tasks. The only work we are
ware of is the one proposed by Wang et al. (2019), who proposed
n RNN-based approach (Anon, 2021f) to achieve such a purpose.
nfortunately, RNN-based approaches process embedded tokens
ne by one sequentially and hence will suffer from long de-
endency issues, which will subsequently impact the prediction
esults.

Motivated by these findings, we have prototyped an auto-
ated app internationalisation approach based on the famous
ransformer model3 trained on the translation agreements among
eal-world Android apps. Experimental results show that our
pproach is effective, being able to outperform the state-of-
he-art and achieve reliable text translations when fulfilling the
nternationalisation feature for Android apps.

To summarise, this research makes the following key contri-
utions:

• We present the first exploratory study to understand the
status quo of app internationalisation in the Android com-
munity.

• We design and prototype a neural network-based tool called
Androi18n for achieving automated app internationalisation
through learning knowledge from existing Android apps.

• We evaluate Androi18n using a large set of real-world An-
droid apps and against five popular speaking languages. The
corresponding experimental results show that our approach
is effective, being able to outperform the state-of-the-art
approach and generate reliable translations.

Open source. The source code and datasets are all made
ublicly available in our artefact package (Anon, 2022b).

3 Unlike RNN, which treats a sentence word by word, Transformer processes
entences as a whole. Transformer further goes beyond RNN by support-
ng multi-head attention and positional embeddings, which further provide
nformation about the relationship between different words.
2

Fig. 1. Example of Java internationalisation excerpted from Anon (2021h).

2. Background

Internationalisation has been a common feature implemented
in modern software to enter the global market for decades (Luong
et al., 1995). The idea of internationalisation is to decouple multi-
language support from engineering works, so that developers can
exclusively focus on function development while dedicated lan-
guage translators can address the translations between different
languages.

Fig. 1 shows a simple example4 excerpted from Anon (2021h)
that illustrates how the internationalisation of programs is (man-
ually) achieved. At the beginning, developers need to identify all
the hard-coded texts that will be shown to users and should be
translated based on users’ locale. The identified hard-coded texts
are then maintained in a dedicated configuration file. Their corre-
sponding translations are subsequently maintained in other con-
figuration files (i.e., one per language). After that, the program-
ming code can refer to these files for accessing the texts needed
to show on the software (e.g., messages.getString(‘‘greet-
ings’’)). Based on users’ locale, the corresponding configura-
tion file can be loaded (without largely modifying the program-
ming code), and the displaying languages will be switched to the
one best fit for the users.

!-- Code snippet from strings.xml under directory values -->
resources>

<string name="app_name">Launcher Play</string>
<string name="wallpaper">Wallpaper</string>
<string name="a_beer">A Beer</string>
<string name="icon_size">Icon size</string>
<string name="circle_menu_apps">Circle menu apps</string>
...

<!-- Code snippet from strings.xml under directory values-es -->
<resources>

<string name="app_name">Launcher Play</string>
<string name="wallpaper">Fondo de pantalla</string>
<string name="a_beer">Una cerveza</string>
<string name="icon_size">Tamao de icono</string>
<string name="circle_menu_apps">Aplicaciones del circulo</

string>
...

Listing 1: Code snippets of strings.xml excerpted from Android
project (Anon, 2022c).

The internationalisation of Android apps is supported in a way
similar to traditional programs. The internationalisation mech-
anism adopted by Android apps is also implemented through
configuration files. Fig. 2 illustrates the typical file structure of an
Android project. The configuration files are located under the res
directory. The texts configured in file values/strings.xml will

4 The full example is available as a tutorial (Anon, 2021h).
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Fig. 2. The typical directory structure of an Android application.

e displayed as the default setting, which should be the language
hat most intended users are familiar with. The alternative texts
or different languages are provided in file strings.xml in ded-
icated directories (often in the form of values-<qualifier> in
the res directory. The <qualifier> is a locale name indicating
he language that is provided for Anon (2021a). For example,
alues-es indicates that its strings.xml configuration file is
ritten in Spanish (hence the app will display Spanish if the
sers’ locale is configured as so) as the example in Listing 1 (Anon,
022c). When users run the app, the Android system selects the
pecific resources according to the devices’ locale. If no specific
qualifier> is provided, the default setting will be used.

. Exploratory study

.1. Dataset

We plan to conducted our exploratory study on real-world
ndroid apps, including both open-source and closed-source An-
roid apps.
Open-source Android apps: Apps in this category have their

ource code made publicly available in the community, e.g., on
opular code hosting sites such as Github and Bitbucket or dedi-
ated sharing sites such as F-Droid for distributing open-source
ndroid apps. In this work, we used the AndroZooOpen (Liu
t al., 2020) dataset which collects many open-source Android
pps. AndroZooOpen currently contains over 70,000 open-source
ndroid apps collected from the aforementioned resources (i.e.,
ithub, Bitbucket, F-Droid, etc.).
Closed-source Android apps: Apps in this category come as

compiled versions that are usually distributed by their developers
through app markets such as the official Google Play store. In the
current mobile ecosystem, there are over 300 app stores today,
including over 60 app markets in China and what is more, this
number is still growing.5 In this work, instead of directly crawling
apps from those app markets, we leverage AndroZoo to collect
closed-source apps. The team of AndroZoo has pre-crawled over
10 million Android apps from various app markets, including the
official Google Play store and Chinese ones such as App China.

3.2. Research questions

To fulfil our exploratory study aiming at understanding the
status quo of Android app internationalisation, we resort to an-
swering the following four research questions, formed mainly
from two perspectives: (1) configuration and (2) content. The
former perspective concerns the internationalisation mechanism
at the file level (e.g., whether internationalisation has been intro-
duced and how many languages are supported, etc.). The latter

5 https://www.businessofapps.com/guide/app-stores-list/
3

Fig. 3. The number of selected apps leveraged in the experiments designed to
answer the four research questions.

perspective investigates the actual internationalisation content
provided by app developers. This will only apply to such apps that
have been supported with an internationalisation mechanism.

Particularly, the four research questions are as follows:
RQ1: To what extent are real-world Android apps internation-

alised?
Motivation and Dataset. There are two types of real-world

Android apps (e.g., open-source and closed-source ones) fre-
quently leveraged by our fellow researchers to explore security
and quality issues of Android apps. As the first research question,
we would like to understand if internationalisation has been
considered by these two types of apps. Specifically, as illustrated
in Fig. 3, we randomly select 5000 open-source apps from Andro-
ZooOpen and 5000 closed-source apps from AndroZoo to support
this research question.

Main Findings. Internationalisation is widely addressed in the
closed-source Android apps, while it has not been seriously taken
into account by open-source app developers.

RQ2: How many languages are supported by real-world Android
pps?
Motivation and Dataset. For such apps (both open-source and

losed-source) that have been provided with internationalisation,
e explore how many languages they support. This research
uestion will be helpful in understanding the most popular lan-
uages supported by real-world Android apps. Since not all the
pps of the 10,000 apps selected for answering the first RQ have
een internationalised, we have to randomly re-select 10,000
pps (5000 open-source and 5000 closed-source) to fulfil this
esearch question. This time, we guarantee that both of the 5000
pps have been internationalised.
Main Findings. Closed-source Android apps generally support

ore languages than that supported by open-source apps. In
erms of the most popular supported languages, the difference
etween open-source and closed-source apps is relatively small,
.e., English and Spanish the most popular two languages for both
pen-source and closed-source apps.
RQ3: Do the supported languages change during the evolution of

he Android apps?
Motivation and Dataset. This research question concerns the

volution of the internationalisation feature. With this research
uestion, we aim to understand if the supported languages will be
hanged in the lifetime of given Android apps and observe hints
n understanding why such changes need to happen. Since this
esearch question concerns the history of Android apps, we have
o limit our experimental apps to have (1) explicit releases (tags)
or open-source apps and (2) lineage versions for closed-source
pps. To this end, we are able to select 807 open-source apps and
07 closed-source apps from the corresponding datasets used in
he second research question to prepare the experimental study
f this research question.
Main Findings. During the evolution of Android apps, app

evelopers will likely support new popular languages to attract
ore users.

https://www.businessofapps.com/guide/app-stores-list/
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Fig. 4. The percentage of internationalisation among the top-20 categories.

RQ4: To what extent is the internationalisation provided by
existing apps consistent with each other?

Motivation and Dataset. This research question goes beyond
file-level investigation to further look at the contents of sup-
ported languages. Since open-source apps are generally non-
commercial ones (as revealed in the findings of RQ1, only a small
set of open-source apps are also uploaded to Google Play), they
might not have been designed to be used by large-scale app
users. Their quality, including the contents put into supporting
internationalisation, cannot be guaranteed. Therefore, in this re-
search question, we decide to only look at the internationalisation
contents of closed-source Android apps. Specifically, the same set
of 5000 closed-source apps used in RQ2 is used to prepare the
experiments for this research question.

Main Findings. With over 95% of consistency rate, the trans-
lation tends to be consistent among different Android apps.

3.3. RQ1: Internationalisation rate

Experimental Setup: To understand the status quo of Android
app internationalisation, we investigate to what extent real-world
Android apps supported with internationalisation feature. We
randomly selected 5000 real-world open-source Android apps
from AndroZooOpen (Liu et al., 2020). We then randomly selected
5000 closed-source Android apps from AndroZoo (Allix et al.,
2016).

For each of the selected apps, we checked if it has been sup-
ported with internationalisation feature based on the following
two rules: Rule 1: The app has adopted the internationalisa-
tion mechanism introduced in Section 2 (e.g., the non-empty
strings.xml shown in Fig. 2 exists in Android apps). Rule 2:
The app supports at least two languages. For open-source apps,
we directly search for the relevant files in their repositories, while
for closed-source apps, we leverage the Android Asset Packag-
ing Tool (AAPT) (Anon, 2021b) to traverse the res directory to
locate the relevant files. To determine the type of the supported
language, we check the qualifier of the directory containing the
strings.xml. The actual supported language is determined based
on the name of the directory (e.g., the directory values-fr in
Fig. 2) where the internationalisation file is located. However,
the default language of the app does not provide such informa-
tion (e.g., directory values), we resort to a popular Python tool
(polyglot) (Anon, 2021d) to identify the languages of internation-
alisation. We extract the values of the items in the strings.xml and
feed the values into the popular package polyglot (Anon, 2021d)
to determine the type of the language.

Results: Table 1 illustrates the international rate of Android
apps. Overall, 5485 of the selected 10,000 real-world Android
apps are supported with internationalisation feature, giving an
internationalisation rate of 54.85%.
 i

4

Table 1
International rate of Android apps.

Open-source Closed-source Total

#. Apps 5,000 5,000 10,000
#. Apps (inter.) 497 4,988 5,485

Ratio (%) 9.91 99.76 54.85

Among the 5000 open-source apps, only 497 apps support
at least two different languages, giving an internationalisation
rate of 9.91%. The low internationalisation rate of open-source
Android apps may be caused by the lack of a dedicated team
to develop and maintain the internationalisation task. Indeed, it
requires experienced multilingual developers to implement the
internationalisation feature. We further go one step deeper to
check to what extent the selected open-source apps are also
released on the official Google Play store. Our experimental result
reveals that only 2.74% (137/5000) of the open-source Android
apps are currently available on Google Play.6 Among the 137
Android apps, only 48 of them support internationalisation, giv-
ing an internationalisation rate of 35%, which is much higher
than that of apps not available on Google Play, for which the
internationalisation rate is only around 9.2% (449/4863).

In contrast, most of the selected closed-source Android apps
(i.e., 99.76% = 4988/5000) do support internationalisation. This
big contrast, compared with open-source Android app develop-
ment teams, indicates that internationalisation is regarded as
important by closed-source Android apps. Indeed, almost every
app released to app markets has supported internationalisation,
which is expected as app developers usually want to obtain as
many worldwide users as possible. We further go one step further
to check the internationalisation rate across different categories
among the selected real-world Android apps. Since AndroZoo
does not provide the category information about the Google Play
Apps. We write scripts to crawl such categories directly from
Google Play, for which each published Android app has been
assigned to a category. We then calculate the internationalisation
rate for apps in each category. Fig. 4 illustrates the rate for the
top-20 categories. As shown in the figure, as well as revealed
in our experimental results, the internationalisation rate crossing
different categories is generally stable. This experimental evi-
dence strongly suggests that category has a limited impact on the
adoption of the internationalisation feature in Android apps.

Answer to RQ1

Internationalisation is widely addressed in the closed-source
Android apps, while it has not been seriously taken into
account by open-source app developers.

3.4. RQ2: Diversity of supported languages

Experimental Setup: In our second research question, we
further investigate the diversity of languages supported by the
apps that have internationalisation. Since there are only 497 An-
droid apps with the internationalisation feature (cf. Section 3.3),
which may not be representative enough to fulfil the experiment,
we thus re-select 5000 open-source Android apps (We actually
checked more apps and only stopped at the point when 5000 apps
(with internationalisation supported) are located.) that have been
internationalised (i.e., with at least two languages supported).

6 There might be more apps uploaded to Google Play initially as Google Play
s regularly removing apps (Anon, 2022a).
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Table 2
Top-10 languages, language pairs, and language triples ranked by the number of apps that supported them. To better present the results, we have considered different
language dialects as the same language (e.g., both American English (i.e., en-rUS) and British English (i.e., en-rGB) are regarded as English (i.e., en).
# Open-source Apps # Closed-source Apps

Language Language pair Language triple Language Language pair Language triple

en (English) 4,883 en - es 2,088 de - en - fr 1,498 en 4,988 en - es 4,805 de - en - fr 4,756
es (Spanish) 2,112 en - zh 1,937 en - es - fr 1,498 es 4,814 en - fr 4,802 en - es - fr 4,755
zh (Chinese) 1,988 de - en 1,929 de - en - es 1,471 fr 4,808 de - en 4,782 de - en - es 4,744
de (German) 1,941 en - fr 1,875 de - es - fr 1,402 de 4,784 es - fr 4,759 de - es - fr 4,737
fr (French) 1,888 en - ru 1,827 en - fr - ru 1,371 ru 4,750 de - fr 4,758 en - fr - it 4,720
ru (Russian) 1,838 en - pt 1,606 de - en - it 1,369 zh 4,737 en - ru 4,749 en - es - it 4,719
pt (Portuguese) 1,625 en - it 1,543 en - es - ru 1,368 it 4,733 de - es 4,746 en - es - ru 4,719
it (Italian) 1,551 es - fr 1,506 de - en - ru 1,367 pt 4,722 en - zh 4,735 es - fr - it 4,717
ja (Japanese) 1,398 de - fr 1,504 en - es - pt 1,364 ja 4,717 en - it 4,730 en - es - pt 4,716
pl (Polish) 1,319 de - es 1,477 en - fr - it 1,357 ko (Korean) 4,694 fr - it 4,723 en - fr - ru 4,716
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Fig. 5. Distribution on the number of languages supported by open-source and
close-source Android apps.

We did the same re-selection for closed-source Android apps
(i.e., eventually collecting 5000 closed-source apps with interna-
tionalisation). We follow the approach presented in Section 3.3 to
collect the set of languages supported by each app.

Results: Table 2 summarises the statistic results, including the
most supported language, language pair (i.e., two different lan-
guages that are supported simultaneously), and language triple
(i.e., three different languages that are supported simultaneously).
English and Spanish are the two most popular languages for
both open-source and closed-source Android apps. This is
onsistent with the fact that English and Spanish are the most
opular (in terms of the number of countries and regions) spoken
anguages in the world. Among the top-10 popular languages,
ine of them are considered by both open-source and closed-
ource Android apps. It implies that app developers prefer to
upport the most popular languages first when supporting in-
ernationalisation as it enlarges the potential user base of their
pps.
When looking at the number of apps each language is sup-

orted, we can observe that the number of languages sup-
orted decreases sharply for the open-source app set while
hat is generally stable in the closed-source app set. This
henomenon also applies to the top supported language pairs and
anguage triples. This result suggests that closed-source apps are
ot only more likely to be integrated with internationalisation
eature than open-source apps (as confirmed previously) but also
end to include more languages compared to open-source apps
hen implementing internationalisation. Similar trends could
lso be observed when concerning language pairs and language
riples between open-source and closed-source apps. This find-
ng is further backed up by the distribution of the number of
upported languages in open-source and closed-source apps, as
llustrated in Fig. 5. The difference is also statistically significant,
s confirmed by an MWW test.
 t

5

Answer to RQ2

When supporting internationalisation, app developers tend to
include the most popular speaking languages first, which is
true for both open-source and closed-source Android apps.
In practice, closed-source apps have generally included more
languages than open-source Android apps.

3.5. RQ3: Evolution of internationalisation

Experimental Setup: In this research question, we are inter-
sted in understanding how internationalisation evolves during
evelopment and maintenance phases of Android apps.
For the open-source projects, as mentioned early, we have

etained 807 projects to support this study. The 807 apps are
elected from the initial 5000 apps leveraged for answering the
revious research question. The reason why 807 apps are selected
s that we limit the selected apps to contain at least two public
eleases (via tags on Github). Among the 5000 open-source apps,
nly 20.48% (1024/5000) of them have been explicitly released
y their developers. Unfortunately, 217 of the 1,024 projects
ontain only one release, which cannot be used to support our
volutionary study. Therefore, we have to further exclude them
rom consideration. Finally, we retain a total of 807 open-source
ndroid app projects to fulfil this study.
For closed-source Android apps, we cannot extract their evo-

utionary histories from the apps per se as such information
s not included. To overcome this limitation, we followed the
dea of Gao et al. (2019a,b) to extract the evolutionary histo-
ies based on the apps’ historically released versions (termed as
pp lineages). We selected 807 apps (the same number as the
pen-source apps) from 5000 closed-source apps and resorted to
ndroZoo again to mine their historical releases (i.e., the same
pp but is released at a different time). Eventually, we mined five
ersions for each of the selected 807 apps based on the app’s last
odification time (one version per year7). This process leads to in

total 4035 closed-source apps, which are then leveraged to fulfil
this study.

To determine the languages supported in our selected Android
apps, we first exclude languages represented by the directory
values-<qualifier> but with an empty strings.xml file. For such
language translations that are indeed not empty, we investigate
the proportion of terms translated in their strings.xml files com-
pared with the default setting (i.e., strings.xml file). We further
exclude languages with less than 30% terms translated for the
selected Android apps. The rationale behind this exclusion is that

7 If multiple versions are released in the same year, we will only consider
he last one in that year to form the dataset.
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p

Table 3
The top-10 added and removed languages during the evolution of the open-source Android app projects on the basis of release. With Repeated
Cases include projects that have both added and removed the same languages, while those projects are excluded for Without Repeated Cases.
With Repeated Cases Without Repeated Cases

Addition Count #. Projects Removal Count #. Projects Addition Count #. Projects Removal Count #. Projects

es 119 116 ru 20 19 es 86 86 zh 7 7
fr 107 105 es 20 19 de 75 75 in 7 7
de 103 100 id 19 17 fr 74 74 zh-rTW 6 6
ru 92 89 zh 19 19 ru 64 64 zh-rCN 6 6
zh-rTW 87 85 de 19 19 zh-rCN 53 53 nb 6 6
zh-rCN 77 77 fr 18 18 zh-rTW 52 52 es 6 6
pt-rBR 75 73 it 16 15 ja 49 49 de 5 5
nl 73 72 nl 15 14 nl 49 49 ru 5 5
ja 72 71 uk 13 13 it 47 47 fr 5 5
it 72 71 pt-rBR 12 12 pl 44 44 nl 5 5
Fig. 6. Language update times during the development of open source Android
apps. (open-source apps).

Fig. 7. Number of languages supported by five consecutive closed-source
Android app releases. As time goes by, the number of supported languages
generally increases.

such translations (with less than 30% terms translated) may not
be representative, i.e., have not been fully completed or come
with low qualities.

Results: We present our analysis results both for open-source
rojects and closed-source apps, respectively.

• Open source evolution: Among all the selected open-source
projects, we excluded 357 empty strings.xml. Since there
is no strings.xml containing items less than 30% compared
with the default one, all the remaining strings.xml (69,349
files) are considered.
Fig. 6 illustrates the distribution of the number of languages
additionally updated based on the two subsequent releases
for every project. Interestingly, over 42% of the projects
have updated at least one language during their devel-
opments. Table 3 further shows the number of languages
added or removed during the evolution based on the two
6

consecutive releases among the total 807 multiple releases
available projects. From the release perspective in repeated
cases, the most frequently updated languages are Spanish
and Russian, with 119 times added (cf. columns 1–3 on
row 3) and 20 times removed (cf. columns 4–6 on row
3), respectively. The number of projects is nearly the same
as the number of times given languages are added or re-
moved in their releases. In general, new languages are added
along with the releases of the projects which is what we
expect. However, a few languages are still added or removed
multiple times as the projects releases since the number of
projects and languages addition and removal are different
between repeated and non-repeated cases.
We then manually looked into some of the projects and con-
firmed that this is indeed the case for some of the Android
apps. Based on our understanding, the main reason causing
those repeated cases is that the developers try to merge
other branches with different languages support before the
release, such as the project edipo2s/TESLegendsTracker
(Anon, 2022d). For example, suppose developers d1 and
d2 have independently contributed to branches b1 and b2,
respectively. Developers d1 has added the support of lan-
guage l when started to contribute to b1 while developers
d2 has not involved any changes related to the app inter-
nationalisation. Once b1 and b2 is merged, all the commits
in b1 will contain l while commits in b2 will not, leading
to repeated cases, e.g., language l is added, removed, and
then added again, and so on so forth. After excluding the
repeated cases (columns 7–12 in Table 3), the number of
added and removed cases are reduced. The aforementioned
experimental results show that app developers are more
likely to add new languages rather than removing existing
ones when developing their apps, as suggested by the high
number of added languages and the low number of removed
languages after excluding repeated cases.

• Closed source evolution: Of the total selected 4035 closed-
source apps (807 app lineages), we excluded 8 empty
strings.xml and 105,447 strings.xml containing items less
than 30% compared with the default one. As a result, 245,378
strings.xml files are retained for our study.
Fig. 7 illustrates the distribution of the number of sup-
ported languages with respect to the app versions in the
selected lineages. Clearly, as time goes by, developers of
closed-source Android apps have appeared to be interested
in supporting more languages in their apps. Similar to that of
open-source projects, we compare the extracted languages
for two subsequent apps (based on their release times) to
decide whether new languages are added or existing lan-
guages are removed. Table 4 summarises the experimental
results obtained based on the evolution of closed-source
Android apps. Surprisingly, we also observe repeated cases
(i.e., add and remove the same language) during the apps’
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Table 4
The top-10 added and removed languages during the evolution of the closed-source Android apps (i.e., app lineages). With Repeated Cases include
lineages that have both added and removed the same languages, while those lineages are excluded for Without Repeated Cases.
With Repeated Cases Without Repeated Cases

Addition Count #. Lineages Removal Count #. Lineages Addition Count #. Lineages Removal Count #. Lineages

ms 358 350 ms-rMY 239 237 ms 140 140 ms-rMY 65 65
sq 350 346 et-rEE 239 237 sq 135 135 et-rEE 65 65
ur 350 345 mn-rMN 237 235 vi 133 133 hy-rAM 64 64
bn 349 344 lo-rLA 237 235 nb 133 133 ka-rGE 64 64
ml 349 344 km-rKH 237 235 th 133 133 lo-rLA 64 64
gu 346 341 ka-rGE 236 234 ur 132 132 mn-rMN 64 64
kn 345 339 hy-rAM 236 234 da 131 131 km-rKH 64 64
nb 345 334 my-rMN 205 205 fi 130 130 en-rIN 53 53
hy 338 334 ur-rPK 205 205 in 130 130 pt 52 52
be 328 321 ta-rIN 203 203 el 130 130 ml-rIN 68 68
a
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evolution history. Unfortunately, at this stage, we do not
have evidence to explain why such cases happened in real-
world Android apps. After excluding the repeated cases, we
could obtained more or less similar observations com-
pared to that obtained during the evolution of the open-
source Android app projects. Nevertheless, the top-10 list
of added languages during the evolution of closed-source
Android apps is quite different (actually less popular) than
that of open-source Android app projects. This result can be
explained by the fact that the popular languages (as listed
in the open-source projects) have already been included
in the closed-source apps during their first release in their
lineages.
In summary, internationalisation has been regarded as an
important feature by Android app developers, no matter
they are developing open-source or closed-source Android
apps. Aiming for attracting as many users as possible, de-
velopers are interested in supporting more languages (dur-
ing the evolution of their apps) and tend to prioritise the
popular ones.

Answer to RQ3

For both open-source and closed-source Android apps, de-
velopers are interested in adding new languages to attract
more potential users during the evolution of their apps. When
adding new languages, they tend to include and prioritise
popular languages over less popular ones.

3.6. RQ4: Consistency

Experimental Setup: One of the objectives of this work is to
check if it is possible to learn from historical internationalised
apps to achieve automated app internationalisation. For example,
if we empirically find that a given term a (e.g., Wallpaper) in
nglish has always been translated to term b (e.g., Fondo de
antall) in Spanish in a randomly selected set of apps (c.f. Listing
), we could conclude that Fondo de pantall is the Spanish version
f Wallpaper.
In this research question, we are hence interested in checking

f such consistency has been kept in real-world Android apps.
o this end, we use our 5000 closed-source Android apps that
upport at least two languages to investigate the term translation
onsistency among different apps. To determine the translation
onsistency, we wrote scripts to map translation terms between
ifferent languages among the collected Android apps and con-
luded that the translation is consistent if and only if these exists
nly one translation between two different languages for the
ame term, such as the translation from Wallpaper in English to

Fondo de pantall in Spanish is consistent if and only if the English

7

term Wallpaper is always translated to Fondo de pantall in Spanish
mong the selected Android Apps.
Results: For the sake of simplicity, we only discuss the top-10

erm translations. Fig. 8 illustrates the coverage of term transla-
ions (i.e., how many terms are translated w.r.t. the total number
f terms needed to be translated) of the top-10 pairs. Surprisingly,
ot all the terms displayed to app users are translated when
upporting a new language. In such a case, the default terms will
e displayed. Nevertheless, the fact that only a small number of
erms are not covered shows that this impact could be neglected,
ot even mention that some terms look very similar between
ifferent languages.
For the translated terms, Table 5 further summarises the ex-

erimental results concerning the consistency of the translations.
gain, the top-10 language pairs are considered, which are listed
n the first column. The second and third columns indicate the
umber of consistent translations (term a in language X is always
ranslated to term b in language Y in different apps) with respect
o case sensitive (i.e., exactly the same) and case insensitive
i.e., the same text, but some characters come with different
ases) comparisons. The fourth column shows the percentage
f inconsistent translations, i.e., the same term is translated to
ifferent ones by different apps. For example, the term ‘‘View
osts’’ in English has been translated to both ‘‘Ver publicaciones’’
nd ‘‘Ver posts’’ in Spanish. The fact that only a small amount
f translations is inconsistent among different Android apps
hows that the existing translations, with at least 95% of trans-
ations agreed by randomly selected apps, are quite reliable.
hus it seems very possible to learn from those existing (or
istorical) translations to perform automated text translation so
s to achieve accurate and automated internationalisation for
ndroid apps.

Answer to RQ4

When supporting app internationalisation, not all the terms
have been translated to the targeted languages. Nevertheless,
for such terms that are indeed translated, the translation tends
to be consistent among different Android apps (with over 95%
of consistency rate).

4. Automated app internationalisation

Our preliminary study experimentally shows that the term
translations provided by existing Android apps are reliable sources
for mining practical term translations, which are essential to
achieve automated app internationalisation. Motivated by those
experimental results, we designed and prototyped an automated
approach called Androi18n to help app developers more effec-
tively implement app internationalisation.
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Table 5
Top ten closed source Android apps language translation.
Language pair Consistent Inconsistent Total

Case sensitive Case insensitive

es->fr 205,306 (93.26%) 6,695 (3.04%) 8,146 (3.70%) 220,147
de->fr 200,279 (92.82%) 6,971 (3.23%) 8,519 (3.95%) 215,769
de->es 199,358 (93.18%) 6,671 (3.12%) 7,917 (3.70%) 213,946
fr->it 178,267 (93.76%) 5,548 (2.92%) 6,310 (3.32%) 190,125
es->it 173,828 (93.73%) 5,536 (2.98%) 6,099 (3.29%) 185,463
de->it 172,621 (93.27%) 6,005 (3.24%) 6,446 (3.48%) 185,072
es->ru 162,299 (93.19%) 4,509 (2.59%) 7,357 (4.22%) 174,165
fr->ru 160,851 (93.32%) 4,198 (2.44%) 7,318 (4.25%) 172,367
de->ru 156,717 (93.05%) 4,503 (2.67%) 7,211 (4.28%) 168,431
it->ru 142,639 (93.18%) 3,969 (2.59%) 6,474 (4.23%) 153,082
n-
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Fig. 8. The coverage of translated items of the top-10 language pairs.

4.1. Androi18n

Fig. 9 illustrates the working process of our Androi18n tool,
ade up of two key modules. The two modules are named

1) Knowledge Base Construction and (2) Transformer-based Term
ranslation. We now briefly introduce these two modules, respec-
ively.

Module #1: Knowledge Graph Construction: The first mod-
le of Androi18n constructs a large knowledge graph (Singhal,

2021; Ehrlinger and Wolfram, 2016) recording all the term trans-
lations in real-world Android apps provided by app developers.
This module starts by disassembling real-world Android apps
(from their bytecode format) and locating their internationalizatio
related resources. The terms and their practical translations are
then extracted for building our Androi18n knowledge graph. This
nowledge graph will then be leveraged by Androi18n to guide
he second module to achieve automated term translations. In our
xtracted knowledge graph, we model each term in a language
s a node and the connection between two nodes containing
he same term but with different languages as an edge. For
xample, Choose an image in English and Sélectionner une image
n French will be regarded as two independent nodes in the
nowledge graph. Since these two terms are essentially equiv-
lent (i.e., with the same meaning), the corresponding two nodes
ill be connected with an edge. To model the agreements among
ifferent apps for a given translation, we further assign each edge
weight, indicating the number of apps that have shared the

ame translation.
Module #2: Transformer-based Term Translation: The sec-

nd module of Androi18n takes the state-of-the-art Transformer
odel (Vaswani et al., 2017) to achieve our automated term

ranslation objective. The transformer model is a deep learning

ethod that adopts the self-attention mechanism to deferentially l

8

weigh the significance of each part of the input data, i.e., the
ability to attend to different positions of the input sequence to
compute a representation of that sequence. This model has been
widely used (and demonstrated to be useful) in the fields of
natural language processing and computer vision. In this work,
the Transformer model will be trained based on the practical term
translations recorded in the graph database.

Before feeding the text translations into the neural network,
the model first embeds the texts into numerical vectors. After
that, the model leverages the encoding blocks to extract the
input’s semantics layer by layer. Each layer here includes two
sub-layers: multi-head attention mechanism and fully connected
position-wise feed-forward network, which are responsible for
mining the relationships between the words in the text and
further extracting semantics in text sequences. Different from the
encoding blocks, each decoding block includes three sub-layers,
with an additional sub-layer called masked multi-head attention
included at the beginning of each block. This additional sub-layer
is designed to enable output generation in parallel.

We now evaluate the effectiveness and usefulness of An-
droi18n by answering the following two research questions.

• RQ5: How effective is Androi18n in automatically translating
terms in Android apps?

• RQ6: How useful is Androi18n in helping developers achieve
automated Android app internationalisation?

.2. RQ5: Effectiveness evaluation

Experimental Setup: To evaluate Androi18n’s automated app
erm translation capability, we first select 50,000 closed-source
ndroid apps and then construct a knowledge graph with lan-
uage texts extracted from these 50,000 different Android apps.
e then query the translations between English and the other

ive United Nations (UN) official languages (e.g. Arabic, Chinese,
rench, Spanish, Russian) (Anon, 2021g), and based on the ob-
ained translation texts, we train our Transformer-based model
o achieve automated term translation. For each language A to
anguage B translation, the whole dataset would be split into
rain/valid/test sets with respectively 80%/10%/10% items. In the
ata pre-processing, the tokens/words that appear in the train
et less than three times would be excluded, which is a common
tep in natural language processing. As for tokenization (or word
egmentation) of the texts in train/valid/test sets, we selected
ifferent open-source tools for different languages. For example,
e performed the widely-used NLPIR toolkit to tokenize Chinese
nd the well-known NLTK package for English tokenization. In the
raining process on the train set, we additionally used the valid
et to choose the best-trained model. That is, the model with the
est performance on the valid set is considered and subsequently
e taken as the final trained model for testing.
We compare the performance of Androi18n against two base-

ines.
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Fig. 9. The working process of Androi18n.
Fig. 10. Translation results over Google-based, RNN-based baseline and Androi18n.
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• Baseline #1: Google Translate. Google Translate is often
regarded as one of the most performant translation ser-
vices that have been widely used in the software engi-
neering community. With the fast development of Natural
Language Processing (NLP) techniques, the performance of
Google Translate has been continuously improved. Many
practical software applications (such as Transifex) have di-
rectly embedded it to achieve automated text translations.
Therefore, in this work, we take Google Translate as the first
baseline for comparison.

• Baseline #2: The RNN-based approach proposed by Wang
et al. (2019). Wang et al. (2019) leverage an RNN (Anon,
2021f) model to achieve domain-specific machine transla-
tion for software localisation. To the best of our knowledge,
this is only one work in the literature that is closely related
to ours. They experimentally evaluated their approach based
on a set of human-translated bilingual text pairs collected
from different Android apps crawled from the official Google
Play store. Their experimental results show that their ap-
proach is effective and can generate acceptable translation
with fewer needs for human revisions. We thus consider it
as one of our baselines to compare it w.r.t. the effectiveness
of Androi18n.

For Google Translate, we directly leverage the Google Translate
PI8 to obtain the translation results for the sampled data. For the
pproach proposed by Wang et al. (2019), unfortunately, the au-
hors have not made their tool implementation publicly available,
nd we cannot directly reuse their approach for comparison. To
his end, we re-implemented a text-to-text translator based on
he RNN encoder–decoder model (hereinafter referred to as Base-
ine) and use it for comparison. Following the strategy applied

8 https://cloud.google.com/translate
9

by Wang et al. (2019),9 we also add an attention mechanism and
copy mechanism to improve the default RNN model.

Results: Fig. 10 and Table 6 summarise our experimental
results.For all five experiments, our Androi18n approach is able
to outperform both the Google Translate and RNN-based base-
line approaches, giving both higher BLEU and ROUGE scores.
To be more specific, Androi18n is 3.7% and 3.08% higher than
Google Translate and RNN-based baseline on average, respec-
tively, in terms of BLEU. With regard to ROUGE, Androi18n is
on average 1.55% and 0.98% higher than Google Translate and
RNN-based baseline. Our Mann–Whitney-Wilcoxon (MWW) tests
confirm that the performance differences between our approach
and the two baseline approaches are all significant, i.e., the p-
values are always smaller than 0.005.10 The effect sizes with
regard to our approach listed in Table 7 are all greater than 0.2
(the small effect size11). Especially, they are greater than 0.55
when it comes to the BLEU related metrics, representing that our
experimental results are significantly different and our approach
is better than others. BLEU (Bilingual Evaluation Understudy,
the most important metric used in NLP community) (Papineni
et al., 2002) and ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) (Lin, 2004) are the standard metrics to evaluate the
performance of machine translations, for which the BLEU score
measures the precision (how many words generated by machine
appears in human summarises) while the ROUGE score measures
the recall (how many words in human summaries appeared in

9 Wang et al. (2019) have adopted three mechanisms to improve the perfor-
ance of their RNN encoder–decoder neural translation. We have replicated two
f them. The remaining one concerning the category information of collected
ndroid apps is ignored as we do not have the category information of the
andomly selected apps (AndroZoo does not provide category information at
he moment).
10 Given a significance level α = 0.005, if p-value < α, there is one chance in
two hundred that the difference between the datasets is due to a coincidence.
11 https://en.wikipedia.org/wiki/Effect_size

https://cloud.google.com/translate
https://en.wikipedia.org/wiki/Effect_size
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Table 6
Metrics of different language translations.
Language
translation

Algorithm Metrics (%)

BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

en -> ar
Google 31.75 57.94 37.55 26.10 17.88 54.40
Baseline 35.37 59.24 39.42 29.29 22.89 57.08
Androi18n 38.93 61.39 43.29 33.16 26.07 57.49

en -> es
Google 39.25 63.64 44.86 33.19 25.04 61.46
Baseline 40.64 65.31 46.14 34.36 26.34 62.40
Androi18n 43.16 66.46 48.28 37.22 29.05 61.68

en -> fr
Google 40.34 63.11 45.14 34.50 26.94 60.75
Baseline 40.43 62.84 45.02 34.69 27.23 60.86
Androi18n 43.16 65.36 48.12 37.38 29.52 62.44

en -> ru
Google 29.24 52.33 34.21 23.56 17.33 53.69
Baseline 29.66 54.83 34.46 23.99 17.07 53.56
Androi18n 32.65 56.84 37.49 26.72 19.97 54.13

en -> zh
Google 32.57 60.94 37.90 26.12 18.66 57.40
Baseline 30.14 57.56 34.86 23.97 17.17 56.66
Androi18n 33.75 61.13 39.09 27.39 19.83 59.72
Table 7
Effect Size of different metrics with regard to Androi18n.
Algorithm BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Google 0.75 0.62 0.68 0.74 0.81 0.44
Baseline 0.60 0.57 0.63 0.60 0.57 0.28

the machine-generated summarises). Interestingly, Wang et al.
(2019) have demonstrated in their evaluation in 2019 that their
approach achieves significantly better performance than Google.
This is no longer the case, at least based on the results yielded
by our reproduced version. This result is expected as Google
constantly improves its translation service, and the latest version
also relies on the Transformer neural network. However, even
with Google’s improvements (including the model itself and the
large-scale resources for training (Vaswani et al., 2017)), Google
Translate still cannot outperform Androi18n, which directly lever-
ges the original Transformer model (without improvements) and
s only trained on the translations of a limited number of Android
pps. This evidence experimentally shows that domain knowl-
dge is vital for implementing machine translation, confirming
ur previous finding that it is possible to achieve automated app
nternationalisation by learning from existing apps.

Answer to RQ5

Androi18n is effective in achieving automated app interna-
tionalisation, outperforming both Google Translate and the
RNN-based state-of-the-art in terms of both BLEU and ROUGE
scores.

4.3. RQ6: Usefulness evaluation

Our approach has been experimentally demonstrated to be
ffective and be able to outperform two baselines. We now go one
tep further to evaluate the usefulness of the translations through
user study.
Experimental Setup: To fulfil this purpose, we first recruited

ix students who are all bilingual in English and Mandarin and
hen involved three professional Android app developers who
re also familiar with English and Mandarin. We randomly se-
ected 278 translation items (from English to Chinese) from our
ataset for which the translated results are all different among
ndroi18n, the RNN-based translation, and the Google Translate

baseline. The number of translation items was determined by
10
the well-known Sample Size Calculator (Anon, 2022f) with a
confidence level of 95% and a margin of error of 5%. It gave
out a sample size of 278 based on the total sample size 1,000.
For each selected translation item, we set up a multiple-choice
question that includes the original English sentence as the title
and the outputs of the three approaches (in random order) as
options. We further add an additional option for each question
to indicate that the translations are almost the same among the
three approaches. We then put all the generated questions onto
a Google Survey Form and independently share it with the six
students and the additional three professional developers. The
recruited participants are asked to answer all the questions by
ticking the best suitable option.

Results. The user study results clearly show in Table 8 that
our approach generates more human acceptable translations than
Google Translate and the RNN-based baseline, which have only
received better votes for 68 and 21 questions among six re-
cruited students, respectively. For around one-fifth (57/278) of
the cases, the users believe that the translated results are more
or less the same among the three approaches. As for the three
professional developers, their votes are generally consistent with
the ones given by the students even though they categorise
slightly more translated items into the same. In total, 42.09%
(117/278) items performed better, i.e., our approach generally
yields better translation results with the help of Transformer than
with Google Translate or the RNN-based baselines. This result
suggests that it is possible to achieve automated app internation-
alisation through machine translations, especially when trained
over domain-specific knowledge. For example, the English text
‘‘Editing this mails will cost much data. Want to continue?’’ is
translated into Chinese as ‘‘ ’’,
‘‘ ’’,‘‘

, ’’ by Google Translate, RNN-based baseline,
and Androi18n, respectively. The translation clearly shows that
our Androi18n outperforms other tools as it takes context and
domain knowledge into consideration. The keyword ‘‘data’’ in
the text is literally translated by Google Translate and RNN-
based baseline into ‘‘ ’’ rather than the more meaningful term
‘‘ ’’ by Androi18n. This simple example demon-
strates that context and convention would achieve better trans-
lation results if considered. Another English text ‘‘You received
a security code’’ is also translated into ‘‘ ’’,
‘‘ ’’, and ‘‘ ’’ by Google Translate, RNN-based
baseline, and Androi18n, respectively. The key phrase ‘‘security
code’’ was translated by the RNN-based baseline into ‘‘ ’’,
which is not as accurate as the other two translations. Compared
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Table 8
Number of sampled translated items voted better for the corresponding approaches.
Participant Google RNN-based Androi18n Same

6 Students 68 (24.46%) 21 (7.55%) 113 (40.65%) 57 (20.50%)
3 Developers 51 (18.35%) 20 (7.19%) 113 (40.65%) 75 (26.98%)
9 Participants 63 (22.66%) 23 (8.27%) 117 (42.09%) 63 (22.66%)
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to Google Translation, Androi18n’s translation explicitly expresses
the tense of the English text, leading to higher satisfaction for
users who are familiar with Chinese.

Answer to RQ6

Androi18n is useful in achieving more human acceptable trans-
lations than both the Google Translate and the RNN-based
baseline.

5. Discussion

5.1. Threats to validity

The primary threat to external validity of our study concerns
he choice of experimental Android projects. In this work, we
elected different Android projects without considering their in-
ended languages support for specific countries from AndroZoo
nd AndroZooOpen. Moreover, some of the projects in Andro-
ooOpen are not even published on the commercialised App
tore. To mitigate this, we randomly selected projects from these
wo datasets, considered the open-source projects with public
elease information available, and selected a reasonably large
umber of apps to make the projects in this study more repre-
entative.
We assumed that all the text translations collected from real-

orld Android apps are validated by humans (hence are with
igh-quality). However, there is no such guarantee in practice.
evertheless, as confirmed by a small empirical study conducted
y Wang et al. (2019), among 50 randomly selected apps, none
f them have solely relied on machine translations to achieve
obile app text translation. This empirical evidence suggests that

his threat will not significantly impact our empirical findings and
xperimental results.
Furthermore, except for looking at the self-recognised app

ategory, we have not considered the actual scope of the selected
pps (i.e., what are the apps primarily used for?). We simply
onsider an app containing the internationalisation feature as
ong as it supports two or more languages. For example, some
ndroid apps may be developed only to provide specific services
or targeted regions or countries by supporting only the languages
poken by their residents, which may make the feature of in-
ernationalisation unnecessary. To mitigate this, we sample 100
pps12 from the 5000 selected Google Play apps used in RQ1 to
anually check the impact of ignoring the scope of Android apps.
e manually check the description of the sampled apps on the
oogle Play Store to determine if such a restriction exists for any
pp. Our exploration finds that none of our sampled apps has such
estrictions in their description. Even though some of the apps
re developed for specific countries, they still have various types
f languages supported. For example, the app (Anon, 2022e) mo-
ILET provides a service to buy tickets for public transportation or
ay for parking in Poland or Germany. Even though the app was

12 The number is first calculated through a well-known sample size calcula-
or (Anon, 2022f) with a confidence level of 95% and a margin of error of 10%
nd then rounded to the nearest hundred.
11
developed for these two countries, it still provides more than 90
different languages for users to select.

The major threat to the construct validity of our study lies in
possible error in the implementation of our experimental scripts
and tools, such as the default language detection with the Python
package polyglot, and the text string extraction with the spe-
cial placeholder tag ‘‘<xliff:g>’’. To mitigate this threat, we have
carefully reviewed the toolchain and manually validate partial
experimental results against selected datasets.

Under different contexts, the same text expression may need
to be translated into different forms. Such contexts, unfortu-
nately, have not been considered in this work. The corresponding
translation results hence may be less accurate under certain
conditions. Nevertheless, our manual validation has not yet found
such cases, indicating that this threat may not be significant. We
have hence decided to mitigate this threat in our future work.

We conclude the effectiveness of our tool under the experi-
mental translations from English to other five languages, includ-
ing Arabic, Chinese, French, Spanish and Russian. These languages
are the six official languages of the United Nations. However, the
tool could have different performances in other language trans-
lations, which could threaten the usefulness and extensibility of
the tool. We do believe better experimental settings should be
designed to evaluate the genericity of our automated translation
approach. We consider this as our potential future work.

5.2. Implications

The empirical findings and experimental results of this study
have raised a number of opportunities for the research and prac-
tice communities.

Better release note description: In the study, we manually
inspected the description of the sampled apps on the Google Play
Store and found that almost all of the app descriptions do not
clearly specify which languages the app supports, which is not
user-friendly for app users. Therefore, we argue that app devel-
opers should describe the languages supported in the description
intentionally. App users could comment for new language sup-
port if they are not familiar with any of the languages provided
initially, which would boost the spread of the app.

Better internationalisation validation: Our study reveals that
few languages are repeatedly added and deleted during the
volution of the Android apps, even though some of the languages
ay be deleted intentionally by the developers. The inconsistent

anguage support would leave a bad expression to app users and,
hus, hinder the app’s spread. To have a consistent and better
ser experience, a strict internationalisation validation procedure
efore release is necessary. Even for the intentionally deleted
nes, a detailed specification in the release note is indispensable.
esides, we intend to investigate the developers to reveal the
ationale behind the language addition and removal in the future
ork.
Better domain-specific training: In this work, we have exper-

mentally demonstrated that the existing text translations con-
ucted by app developers are an effective and useful basis for
chieving automated app internationalisation. Nevertheless, we
elieve that the performance of our Androi18n approach can be
urther improved if better domain-specific information could be
everaged to help in training the model. For example, Wang et al.



P. Liu, Q. Xia, K. Liu et al. The Journal of Systems & Software 197 (2023) 111559

(
A
r
t
o
t
c
i
t
A

h
i
l
c
t
t
t
v
l
b
H
t
m
b
t
a

t
t
s
i
t
s
t
m
a
o
o
a

t
f
c
n
I
t

6

v
s
e
i
o
t
o
A
V
2
R
o
d

b

2019) have empirically shown that the category information of
ndroid apps is useful for improving the performance of neu-
al network-based text translation. Indeed, apps belonging to
he same category are more likely to share the same patterns
f translations, including the translations of conventional terms
hat are only available in certain categories. In this work, our
losed-source apps are collected from AndroZoo, which does not
nclude apps’ category information. We have hence not explored
he possibility of including category information to implement
ndroi18n.
Human-in-the-loop translation validation: In this work, we

ave constructed the translation graph database based on learn-
ng from term translations in existing Android apps. The trans-
ation accuracy (based on the number of similar translation oc-
urrences in the published Android apps) has been demonstrated
o be promising. However, the translation results obtained via
he Transformer-based translator (if not directly matched over
he database) are not always the case. There is a need to in-
olve human efforts to confirm or revise the automatically trans-
ated results. The confirmed translations could then be written
ack into the database to avoid further human involvement.
owever, app developers may not always be familiar with the
argeted language. The translated expressions given by the auto-
ated approaches may not be as accurate as what is expected
y the developers but cannot be spotted. Therefore, we argue
hat crowd-sourced human-in-the-loop validation is required to
chieve highly accurate automated app internationalisation.
Going beyond automated text translation: To achieve au-

omated app internationalisation, in addition to automated text
ranslation, there is another essential step needed. That is to
et up the internationalisation environment and automatically
dentify all the hard-coded constant strings (scattered in the code)
hat need to be translated to other languages. Such constant
trings need to be externalised to resource files, allowing transla-
ors to translate the app into other languages without actually
odifying the app source code. There are no such automated
pproaches specifically proposed for mobile apps. Nonetheless,
ur community does have contributed various approaches for
ther types of applications, such as the TranStrL tool for Java GUI
pplications.
Translation of non-text content: Some of the apps’ non-

ext content may also need to be translated when preparing
or internationalisation. For example, iconic forms may only in-
lude textual content in a language, which unfortunately will
ot be translated by the current form of internationalisation.
ndeed, they may need more sophisticated image-based analysis
echniques to achieve the translation.

. Related work

There are some IDEs, such as (Anon, 2021e), indeed pro-
ide some mechanisms to highlight hard-coded string literals in
ource code. However, they just extract these strings into prop-
rties files for further internationalisation or just ignore them
f internationalisation is not necessary for them. To the best of
ur knowledge, we are the first to extensively study the interna-
ionalisation of Android applications. However, there are several
ther works (Alameer et al., 2016; Rau and Liang, 2003; Hau and
parício, 2008; Wang et al., 2009; Xia et al., 2013; del Rey and
ázquez, 2019; Wang et al., 2019; Rich, 2011; Burukhin et al.,
009; Fitzpatrick et al., 2013; Escobar-Velásquez et al., 2021;
eina and Robles, 2012) that have studied the internationalisation
f other different systems. In this section, we summarise and
iscuss the most relevant ones.
Wang et al. (2019) first proposed an RNN (Anon, 2021f) model

ased on the Android apps downloaded from Google Play Store to
12
achieve a better domain-specific machine translation compared
with the official Google Translate for software localisation. They
extracted closed-source apps and only focused on the translation
process. Different from what they do, we not only worked on
the translation process per se with a different more advanced
translation model (Transformer) producing a better translation
result but also first reveal the status quo and the evolution
of internationalisation both for open-source and closed-source
Android projects.

Hau and Aparício (2008) explored some issues of software
translation and localisation in web based ERP (Anon, 2021c) and
presented an open source WebERP using in Portugal with local
language for the artefact. ERP is always referred to Enterprise
Resource Planning and usually treated as a category of busi-
ness management software. What they realise is that various
aspects of accounting that are different from the default setting
in the WebERP are all needed to modify according to Portugal
accounting.

Wang et al. (2009) proposed an approach to automatically lo-
cate need-to-translate constant strings and also an Eclipse plug-in
tool that locate need-to-translate constant strings in Java source
code. The authors first select a set of API methods related to
Graphical User Interface (GUI) and then locate need-to-translate
strings from these API calls based on string-taint analysis. This
approach is evaluated on four different real-world open source
applications and the experimental results show the approach
is promising. In addition, they also studied internationalisation
of web applications (Wang et al., 2010) as their previous work
cannot differentiate constant strings represented at the browser
side (need-to-translate) from others not need. To tackle the chal-
lenge, they proposed a novel approach for PHP application. The
approach first tries to locate constant strings that may be prop-
agate to the browser side for displaying. Secondly, they add
location information and further propagate the location flag to
all the other terminals and non-terminals to identify user-visible
constant strings.

Xia et al. (2013) presented their study in software internation-
alization and localisation. They studied a large-scale commercial
system, PAM of State Street Corporation, which is written in
C/C++ and contains more than 5 million lines of source code, and
also proposed supporting tools IRanker and I18nLocator. IRanker
is used to extract convertible and suspicious patterns based on
the selected representative set of code in the most important
source files while I18nLocator is leveraged to locate and convert
source code.

del Rey and Vázquez (2019) did an extensive study on the
connection between localisation and web accessibility, especially
the possibility of transferring accessibility throughout the proce-
dure of localisation, that is to adapt a web product to another
language (web localisation). They analysed how does the current
localisation and internationalisation data exchange standards im-
pact the transferring accessibility qualities and also explored the
techniques proposed by the W3C to help web developers to tackle
the challenges of transferability. Their preliminary findings have
demonstrated that some accessibility features, especially those
relevant with textual content and inter-semiotic purposes, can
be captured, marked, transferred and annotated through existing
mechanisms.

7. Conclusion

In this work, we have first conducted an extensive study on
the internationalisation and localisation of the popular mobile
Android applications. Through this study, we experimentally find
that most closed-source Android apps have been provided with
internationalisation and each of the apps often supports multiple
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anguages. Furthermore, the apps also tend to agree with each
ther when translating the same terms from one language to
nother, demonstrating the possibility of learning from them to
chieve automated text translations. This evidence motivates us
o go one step deeper to actually implement such a translator
hat leverages the translations of existing Android apps to train
Transformer-based neural network model called Androi18n to
chieve this objective. Ideally, Androi18n can support automated
ranslations for as many language pairs as possible, i.e., based on
he language supported by real-world Android apps. Experimen-
al results show that Androi18n is both effective and useful in
chieving automated text translations for Android apps.
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