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Abstract—React Native is a widely-used open-source frame-
work that facilitates the development of cross-platform mo-
bile apps. The framework enables JavaScript code to inter-
act with native-side code, such as Objective-C/Swift for iOS
and Java/Kotlin for Android, via a communication mechanism
provided by React Native. However, previous research and
tools have overlooked this mechanism, resulting in incomplete
analysis of React Native app code. To address this limitation,
we have developed REUNIFY, a prototype tool that integrates
the JavaScript and native-side code of React Native apps into
an intermediate language that can be processed by the Soot
static analysis framework. By doing so, REUNIFY enables the
generation of a comprehensive model of the app’s behavior. Our
evaluation indicates that, by leveraging REUNIFY, the Soot-
based framework can improve its coverage of static analysis for
the 1,007 most popular React Native Android apps, augmenting
the number of lines of Jimple code by 70%. Additionally, we
observed an average increase of 84% in new nodes reached in
the callgraph for these apps, after integrating REUNIFY. When
REUNIFY is used for taint flow analysis, an average of two
additional privacy leaks were identified. Overall, our results
demonstrate that REUNIFY significantly enhances the Soot-
based framework’s capability to analyze React Native Android
apps.

Index Terms—react native, mobile apps, static analysis

I. INTRODUCTION

Mobile apps have become the primary source of digital
consumption, with a growing number of users relying on apps
for various purposes such as shopping, entertainment, and
communication. As a result, businesses are investing heavily
in mobile app development to reach their target audience and
remain competitive in the market. Many companies are facing
the challenge of needing to build mobile apps for multiple
platforms, specifically for both Android and iOS. This cross-
platform mobile app development has gained popularity due
to its consistency across platforms, cost-effectiveness, time
efficiency, wide audience reach, and easier maintenance [1].

Nowadays, React Native (used in Facebook, Shopify, Skype,
etc.) and Flutter (used in Google Ads, Reflectly, Alibaba, etc.)
have become the two most popular frameworks for cross-
platform mobile app development [2]. Each of these cross-
platform solutions has its own capabilities and strengths.

⇤Xiao Chen and Li Li are the corresponding authors.

React Native, an open-source framework, gained popular-
ity since its 2015 launch by combining traditional mobile
development with Node.js-based flexibility. The core idea
of React Native is to empower cross-platform JavaScript
APIs to invoke platform-specific functions involving invoking
Objective-C/Swift or Java/Kotlin functions to utilize iOS and
Android components. This feature sets it apart from other
cross-platform mobile application development technologies
which often end up rendering web-based views. With React
Native, developers can create a shared codebase in JavaScript
that works on both Android and iOS. This is achieved by
providing a set of cross-platform APIs and Components that
conceal platform-specific native code and abstract the differ-
ences between platforms. React Native is flexible and can be
used in existing Android and iOS projects or to create a new
app from scratch [3].

The stats from AppBrain [4] report that among the top 500
Android apps in the US, 14.85% of installed apps are built with
React Native. In fact, in the category of top 500 US Android
apps, React Native is the third most popular framework, right
after Kotlin and Android Architecture Components. While
the use of the React Native framework can streamline the
app development process, it also introduces new challenges
for app analysis, particularly in terms of static analysis. The
main difficulty with static analysis on React Native apps is
their use of multiple programming languages with varying
semantics, along with the complex mechanisms inherent in
the React Native framework. These factors can make it very
challenging to thoroughly analyze and fully comprehend the
app’s codebase.

In the last decade, Android app analysis has been a promi-
nent research theme in software engineering. Static analysis
techniques have been implemented by many approaches and
tools for bug detection, security property checking, malware
detection, and empirical studies. Unfortunately, as far as we
know, there is no existing techniques or tools for analyzing
apps developed with React Native. The approaches of the cur-
rent state-of-the-art tools, which were intended for traditional
Android apps, are not sufficient for efficiently covering the
executable code in React Native apps due to the complexity
of the underlying mechanism of the React Native framework.
In light of this challenge, we suggest a new research direction



to enable static analysis of the whole program of React Native
Android app.

We propose REUNIFY, aiming to fill the gap in the whole-
app analysis, by extracting and unifying artefacts from both
the Java and JavaScript sides of React Native Android Apps
into Jimple [5], the intermediate representation in Soot. To the
best of our knowledge, REUNIFY is the first static analyser for
React Native Android apps[6]. By transforming JavaScript-
side code into Jimple, REUNIFY provides the opportunity for
several analyses (e.g., call graph analysis, control flow graph
and taint flow analysis) in the literature to readily account
for JavaScript code. By modelling React Native mechanism,
REUNIFY increases the coverage of Java-side code analysis.
REUNIFY is thus a multi-step static analysis approach that we
implement as a framework to enable the whole-programme
analysis for React Native Android Apps. This research makes
the following key contributions:

• We propose REUNIFY, a novel approach to build a
unified model of React Native Android app code for fa-
cilitating complete static analyses. We have implemented
REUNIFY to produce the Jimple code, which facilitates
the integration of JavaScript-side code and Dalvik byte-
code within a React Native Android app package.

• We show that REUNIFY can significantly enhance React
Native Android Apps’ call-graphs, revealing previously
unreachable methods in React Native Android Apps.

• We evaluate REUNIFY on a set of real-world React
Native Android Apps, showing that it enables existing
analysers to reveal sensitive data leaks.

• We release our open-source prototype REUNIFY and all
artifacts used in our study at:

https://github.com/DannyGooo/ReuNify
The remainder of this paper is organized as follows. We

outline the key motivation for this work in Section II, and
Section III presents key aspects of our approach. Section IV
presents our studied datasets, our experimental setup, and our
experimental results. Section V discusses the threats to the
validity of our research. Section VI discusses key related work,
and Section VII summarises this paper.

II. BACKGROUND

A. React Native

React Native is a widely used JavaScript framework that
enables developers to build mobile applications for both iOS
and Android platforms. It is based on the popular React
framework [7], which is a Node.js-based JavaScript library
used for creating user interfaces. However, JavaScript and
React are not natively capable of accessing platform-specific
features e.g. Android-specific or iOS-specific features.

As shown in Figure 1, JavaScript can exchange information
with the platform side through the underlying mechanism of
React Native. As demonstrated in the Figure 1(a), bridge [8]
was used to facilitate the exchange of information between
JavaScript and platform-side code in the old architecture of
React Native. Bridge allowed JavaScript to interact with the

(a) Old Architecture (b) New Architecture

Fig. 1. Cross-Language Communication Mechanism in React Native

platform-specific features (e.g., Native Components and Native
Modules) for building mobile apps. However, this architecture
suffered from issues such as asynchronous behavior, single-
threading, and extra overheads (JSON format) that impacted
performance and flexibility. To address these issues, the new
architecture of React Native adopts the JavaScript Interface
(JSI), as shown in Figure 1(b). The JSI allows a JavaScript
object to hold a reference to a C++ object and vice versa,
enabling synchronous execution, concurrency, lower overhead,
code sharing, and type safety [8]. This approach provides
several advantages over the old architecture and serves as the
foundation of the new Native Module System. Using Turbo
Native Modules and Fabric Native Components developers can
create high-performance and flexible mobile applications for
both iOS and Android platforms.

When developing a React Native application, JavaScript
is used to organize reusable and nestable React Components
to implement the user interface. These components can be
enhanced with various module APIs to achieve desired fea-
tures and functionalities. Figure 2 categorizes React Com-
ponents and Module APIs based on the entity responsible
for maintaining them. React Native comes with built-in core
components and APIs that are ready for use [3]. However,
developers are not limited to these built-in components and
APIs. There are various rich third-party libraries maintained
by the community[9]. Apart from the cross-language strategy
provided by third-party libraries or React Native’s core, de-
velopers can wrap their own native-side code to be invoked
from the JavaScript side through React Native’s underlying
cross-language mechanism [10, 11].

B. JavaScript code in React Native Android APK
When releasing a React Native project as an Android

APK, the JavaScript code from React Native is bundled by
the Metro[12], a JavaScript bundler, which takes in options,
an entry file, and gives you a JavaScript file including all
JavaScript files back. The JavaSript code inside bundle file is



(a) React Component (b) Module API

Fig. 2. The structure of React Component and Module API in the developer’s
JavaScript side

then further compiled into bytecode with Hermes selected as
JavaScript Engine. Once the app launches, the code is loaded
from the bundled file and executed by the JavaScript engine.
The engine runs the code and communicates with the native
side through either bridge in the old architecture, or JSI in the
new architecture.

Since version 0.70.0 (September 2022), the default
JavaScript engine in React Native has been changed from
JavaScriptCore (JSC) [13] to Hermes Engine [14]. Before
that, Hermes Engine has been introduced to React Native
Android and React Native iOS since version 0.60.4 and
version 0.64.0 as an optional engine, respectively. The legacy
JavaScript Engine parse all JavaScript Codes using just-in-
time (JIT) compilation. With the inclusion of Hermes engine,
JavaScript source code would be compiled to bytecode ahead
of time (AOT), which saves the interpreter from having to
perform this expensive step during app startup, and also
contributes to a smaller app bundle size. However, the use of
the Hermes engine in React Native can make static analysis
much more challenging. The generated Hermes bytecode is
not as easily readable or accessible as the JavaScript code,
which makes the current state-of-the-art tools designed for
JavaScript [15, 16, 17] useless in front of Hermes bytecode.
Additionally, current state-of-the-art Android static code anal-
ysis approaches [18, 19, 6, 20] overlook the apps developed
with React Native.

C. Motivating Example
The React Native framework’s complex mechanism con-

ceals a significant portion of the executable code of An-
droid apps built with it from state-of-the-art static analysis
tools [19, 21, 22]. With one analysis for the React Native
Android Apps, Skype, com.skype.raider [23], we make the
case that React Native mechanism should be considered in
static analysis approaches.

Skype is a popular app for real-time video calls, with
more than one billion installations. This app is developed
with React Native framework. Considering the cross-language
communication mechanism in React Native, we discuss both
the JavaScript side code and Java side code. In the example,
we’ve sourced version 8.83.0.411 of the Skype app from
APKMirror1.

1https://www.apkmirror.com/apk/skype/skype-skype/
skype-skype-8-83-0-411-release/

JavaScript Side: The app, Skype, incorporate version 89
of the Hermes engine, and stores the JavaScript-side code as
Hermes bytecode. This bytecode can be decompiled into a
textual disassembly file containing 3,589,897 lines of text and
a file size of 119 megabytes. The file includes 87,400 methods
that were not considered in the current research and tools.

Java Side: We generated a callgraph of the app, Skype, us-
ing FlowDroid for taint flow analysis. The callgraph consisted
of 5,169 nodes and 18,282 edges, and no privacy leaks were
detected. After examining the call graph, it was found that the
Java methods exposed through the Native Module API (135
Modules, 724 methods) and React Native Components (106
Components, 813 methods) were not captured in the callgraph.
Upon these methods, the call graph expanded considerably
to include 13,629 nodes and 51,395 edges, and three privacy
leaks were identified.

This paper presents a novel strategy to address the challenge
of the hidden executable code in React Native Android apps,
which has been a gap in the current research. The aim of this
paper is to enable whole program analysis for React Native
Android app.

III. CHALLENGES AND APPROACH

In order to reveal concealed executable code within Re-
act Native, we have implemented a prototype, REUNIFY,
to enable a more complete static analysis on React Native
Android Apps. As depicted in Figure 3, REUNIFY contains
two key modules. The first module, Jimple Code Generation
(1), instantiates the Java-side and JavaScript-side code inside
the React Native Android Apps in the Jimple representation
(i.e., the intermediate representation in Soot which is the most
widely adopted framework for static analysis of Android apps).
Then, Cross-Language Discloser (2) is implemented based
on the pointer analysis on the Jimple Code generated from
the first module to detect the statements that are responsible
for cross-language communication. We detail the design and
implementation of each module in the following subsections.
However, due to space constraints, we will not present all
technical details related to Jimple. We invite interested readers
to consider our open-source project. REUNIFY is fully open-
sourced.

A. Jimple Code Generation
REUNIFY leverages a divide-and-conquer strategy to fa-

cilitate the construction of unified intermediate representation
for the Java-side code and JavaScript-side code in React
Native Android apps. REUNIFY focus on the Java-side code
compiled into Dalvik bytecode. As mentioned in Section II,
The JavaScript-side code in one React Native Android app
can be either JavaScript code or Hermes bytecode depending
on the JavaScript engine. As shown in Figure 3, for JavaScript
code, REUNIFY uses hermesc (i.e. the Hermes compiler)
that can compile JavaScript to Hermes bytecode but does
not execute it. REUNIFY implements a front-end that can
further transform readable assembly language disassembled by
hbctool into the intermediate language of Soot.



Fig. 3. Overview of ReuNify.

Fig. 4. JavaScript code and the corresponding Hermes bytecode.

As shown in Figure 3, 1a the Dalvik bytecode files within
the React Native Android app are transformed into Jimple by
Dexpler[24] that is a front-end dealing with Dalvik bytecode,
and has been integrated into Soot as one module. In the
implementation in sub-step 1b of Figure 3, tool kits (includ-
ing hermesc and hbcdump) of the Hermes engine converts
the Hermes bytecode or JavaScript into a textual disassembly
which can be further parsed and converted into Jimple code
by the front-end, hermeser, proposed in REUNIFY.

In a typical analysis case, Soot is launched by specifying
the target directory as a parameter. This directory contains
the program (one .apk in this example) for analyzing. First,
the main() method of the Main class is executed. It calls
Scene.loadNecessaryClasses() where Soot locates the speci-

fied source code files (.bundle file for JS-side React-Native
code in this example) from the input .apk file by SourceLo-
cator.v().getClassesUnder(path). Second, HbcClassSource, is
implemented as a module inside Soot framework to create
a SootClass from the corresponding disassembled Hermes
bytecode. When the resolver has a reference to a ClassSource
(HbcClassSource), it calls resolve() on it. SootMethods are
then created, and MethodSources (corresponding to the infor-
mation from the function in disassembled Hermes bytecode)
are distributed for each SootMethod. When a Hermes bytecode
method is stored into MethodSource, its opcode instructions
are organized into blocks that can link to each other through
the control flow. During the solving of each SootMethod, the
Jimple instruction would be created for opcode instructions
within all blocks, then the jump between each block can be
connected. So that the generated Jimple code keep the same
control flow with the Hermes bytecode.

The parts of the REUNIFY that translate one representation
to another are inherently complex because they require the
understanding of the semantics of both representations. In the
following, we detail some challenges in transformation from
Hermes bytecode to Jimple.

Challenges related to Hermes bytecode disassembler:
Challenge 1 Due to the evolution of the React Native frame-
work, each version of React Native can only work with the
compatible version of the Hermes engine. Until April 2023,
there had been 42 versions of Hermes engine released for
different version of React Native framework. Challenge 2 The
disassembled file from various versions of Hermes bytecode
disassembler, hbcdump, can be different. Challenge 3 The
Hermes’ build-in disassembler, hbcdump, does not reveal the
full value of a String and Integer in the textual disassembly if
their length exceeds 16 (as shown in line 14 in Figure 4, the
String value is not fully disclosed in the disassembled Hermes



Fig. 5. Jimple Code generated from the JavaScript code or Hermes Bytecode in Figure 4.

bytecode.).
Challenges related to the program representation: Un-

like the source code or JVM bytecode, all instructions in
Hermes bytecode are stored in functions that are as a sequen-
tial pile. Challenge 4 In contrast to Java, Hermes bytecode
does not use function names, parameters, and return values as
signatures for function identification. In the Hermes bytecode
representation, there may be functions with duplicate names,
unnamed functions, and invocations of the same function with
different numbers of arguments. Challenge 5 In Hermes
bytecode, the Function is considered the First-class Object
similar to JavaScript, i.e., they can be manipulated like any
other data type or variable, which enables functions to be
passed as arguments, returned as values, and stored in reg-
isters. Moreover, all function invocation instructions occur on
a register where a function was assigned before the invocation
instruction was executed. As shown line 15 in Figure 4, Call2
r0, r1, r2, r0 invoke the function store at register r1 with
arguments including r2 and r0, and finally return value would
be stored at and overwrite the value at r0. Also, as the dynamic
feature of JavaScript, the type of each register in Hermes
bytecode is not stable. As shown in Figure 4, the value of a
register, r0, has been assigned by three instructions including
GetGlobalObject, LoadConstString, and Call2, respectively.

Solutions. For challenges 1 , 2 , and 3 , we dedicated
considerable engineering efforts to scrutinize each version of
the source code of the 42 Hermes engines. For example,
we engineered and build on the source code of 42 distinct
versions of the Hermes engine to enable the complete display
of String and Number values in the textual disassembly.
Otherwise, only partial values are displayed by default when
the length of Strings or Numbers exceeds 16. Subsequently,
these built-in tools in Hermes are utilized in the Hermes-to-
Jimple transformation, where we address the inconsistency in
the textual disassemblies.

To address Challenge 4 , a unique SootMethod is created
for each Hermes function with a specific signature before
generating the corresponding Jimple statement. This is nec-

essary to handle cases where there are duplicated function
names, no function names, or unincluded parameter values
used in the function body. The Hermes frontend tool, hermser,
is used to extract information about each Hermes function
from the textual disassembly and store it in an HbcMethod
object. SootMethod is then created while taking into account
the issues identified in the HbcMethod list. For example,
if duplicated names (i.e., OneDuplicatedName) are detected
in those HbcMethods, a new name with one index (e.g.,
hermesDuplicatedFunction_OneDuplicatedName_5) would be
used for the SootMethod.

To address Challenge 5 , a control-flow insensitive pointer
analysis was implemented during the generation of Jim-
ple statements. Hermes opcode instructions are mapped to
Jimple statements, and registers are mapped to Jimple lo-
cal variables. The type of local variables is generated and
updated dynamically in the sequence of each Hermes in-
struction solved. As seen in Figure 5, from line 9 to line
11, the return value type changed from Hbc.GlobalObject
to Hbc.GlobalObject.console.log. A method invocation then
occurs on line 13 using Hbc.GlobalObject.console as the class
name and log as the method name. This allows the method
console.log() to be inferred in a fixed pattern. Each Hermes
opcode instruction is mapped to a corresponding (or a group
of) Jimple statements. Most Hermes opcode instructions would
be generated as staticinvoke statement with Hbc.Opcode as
the class name, Hermes opcode value as the method name.
The return value in the method signature would be used for
recording and tracking the dynamic type of return value. A
comprehensive mapping can be found in REUNIFY’s open-
sourced project.

B. Cross-Language Methods Extraction

In the previous step, we transform the JavaScript-side code
of React Native apps into the intermediate representation in
Soot, specifically Jimple, to facilitate a more thorough static
analysis. However, due to React Native apps behaving native
functionalities through the invocation of Java-side functions,



the significance of Java-side code within these apps cannot
be overlooked. In fact, within the REUNIFY framework, the
analysis of the Java-side code is encompassed. The cross-
language invocation on each side is not naturally connected to
each other. To be able to extract the cross-language invocations
are also an essential step toward whole program analysis.

Step 2a: Dalvik-to-Hermes Invocation Extraction. As
mentioned in Section II, React Native is gradually replacing
the legacy Architecture with the New Architecture. The un-
derlying mechanism for cross-language communication have
changed from bridge to JavaScript Interface (JSI) which
enables direct calls from JavaScript to native code without
the need for a bridge. The implementation for developers to
create Native API and Native Components is also changed
with the update of Architecture. Native Module and Native
Components are the established technologies utilized in the
legacy architecture. They will be deprecated in the future once
the New Architecture becomes stable. The New Architecture
uses Turbo Native Module and Fabric Native Components to
achieve similar results [10]. In this case, we take Turbo Native
Module as one example to explain step 2a of REUNIFY. (The
intuition is that the identification process for Native Module
is similar and easier than the Turbo Native Module.)

This step is performed over 5 sub-steps: 1 Analyzing class
hierarchy to record classes that extend ReactContextBaseJava-
Module and also implement both ReactModuleWithSpec and
TurboModule as shown in the line 2 and line 3 of Figure 6.
2 Records the name for the method with @ReactMethod
annotation. (as shown in the line 10 of Figure 6) 3 Track class
hierarchy to detect the classes that extend the classes recorded
in sub-step 1 (as shown in the line 14 of Figure 6). 4 Go
through the methods in the class recorded in sub-step 3, and
retrieve out the methods that overwrite the methods recorded
in sub-step 2 (as shown in the line 27 of Figure 6). 5 Retrieve
the method with the sub-signature, java.lang.String getName()
(as shown in line 22 of Figure 5), and further extract the return
value of this method (e.g., the return value is Calendar at line
15 of Figure 6) as the Module API name.

The aforementioned procedure showcases REUNIFY’s ap-
proach for the Dalvik-to-Hermes Identification within the New
Architecture (i.e., Turbo Native Module). Implementing the
Dalvik-to-Hermes Identification within the Old Architecture
(i.e., Native Module) is less challenging than the aforemen-
tioned process. A process resembling sub-step 1 is essential to
discover the class that encapsulates the Native Module, where
methods annotated with @ReactMethod would be considered
as Module API methods. Subsequently, sub-step 5 can be car-
ried out to determine the Module API name in the same class.
A similar approach can be used to identify cross-language
communication on the Java side for Native Components and
Fabric Native Components, by tracking the method annotated
with either @ReactProp or @ReactPropGroup. However, due
to space limitations, we cannot provide all the technical details
here. For a more comprehensive understanding, please refer to
REUNIFY’s open-source project.

Step 2b: Hermes-to-Dalvik Invocation Extraction. The

Fig. 6. Module API registration example in New Architecture of React Native.

Module API name and methods name retrieved from the
Step 2a would be used as the identifier for the cross-
language invocation on the JavaScript side. Compared to Java
code analysis, pointer analysis is more challenging in Hermes
bytecode due to the language’s dynamic feature, as Hermes
bytecode is compiled from JavaScript. This means that register
values are not determined until runtime, which potentially
leads to instability of the value in function invocation’s callee
registers and complicates analysis. To address this, we use a
control-flow-insensitive technique to track the value stored in
a register (variable). As seen in Figure 5, from line 9 to line
11, the return value type changed from Hbc.GlobalObject to
Hbc.GlobalObject.console.log.

In the process of Hermes-to-Jimple transformation, all the
registers that are used as callee of function invocations are
recorded. The Module API names and method names retrieved
from step 2a are used as a filter to detect the Hermes-
to-Dalvik invocation. To implement the cross-language invo-
cation for the Java-side code from the JavaScript side, one
object name will be used on the JavaScript side to access the
object that is exposed from the Java-side code. In the example



in Figure 6, the value, Calendar, which is retrieved by the
sub-step 5 at Step 2a , is the object name exposed to the
JavaScript side code. To access the method wrapped into the
exposed cross-language object, the method name would be
used to retrieve the value (Java-side function) stored into key-
value pair. The method name, createCalendarEvent, will be
used to refer the function at line 27 at Figure 6. To implement
invocation at hbc, the Hermes opcode instruction for function
invocation is used with the callee register. By comparing
the value of each callee register with the Module API and
function name, the potential Hermes-to-Dalvik Invocation can
be retrieved.

The accuracy and precision of Hermes-to-Dalvik Invocation
Analysis rely on effective pointer analysis of function invoca-
tion’s callee registers. However, the use of First-class Objects
for all Hermes functions adds complexity to comprehending
program behavior in static analysis. This complication is
especially notable in intricate systems like React Native and
during code transformations using JavaScript bundlers.

IV. EVALUATION

In this section, we commence by undertaking a preliminary
study to explore the extent of React Native’s utilization.
Subsequently, we delve into the following research questions
to gauge the significance of our contributions:

• RQ1: How well does REUNIFY enhance Soot-based
static analysis on React Native Android Apps?

• RQ2: Can REUNIFY reveal previously unreachable sen-
sitive data leaks in React Native Android Apps?

We ran all of our experiments on a Linux server with Intel
(R) Core (TM) i9-9920X CPU @ 3.50GHz and 64 GB RAM.

A. Preliminary Study
We first conducted a preliminary study to explore the

utilization of the React Native framework across a spectrum
of Android apps, encompassing both popular and potentially
malicious applications.

Dataset: To create a dataset of popular Android apps,
we began by gathering a list of 15,854 Android apps from
ANDROIDRANK [25]. This list included the top 500 apps
for each of the 32 app categories available on Google Play.
We then downloaded the latest version of 14,874 out of 15,854
of these apps from AndroZoo [26]. The remaining 980 apps
were not available for download.

In addition, we obtained a dataset of 60,618 malware apps
from VirusShare [27], which included Android malware apps
collected by VirusShare in 2022. We also gathered 67,135
malicious apps from AndroZoo. We consider an app to be
malicious if at least 10 antivirus engines in VirusTotal had
flagged it.

Study Design: The React Native framework is developed
using multiple programming languages, including Java, C++,
JavaScript, Objective-C, and others [28]. The framework code
is typically included in the release build to ensure proper app
functionality. To gauge the extent of React Native framework
adoption in Android apps, we conducted a preliminary study in

TABLE I
JAVASCRIPT-CODE FORMAT IN MOST POPULAR APPS AND MALWARE APPS

Category Hermes Bytecode JavaScript Total
Popular 494 574 1 068
Malware 28 413 441

Total 522 987 1 509

which we examined the APK file of each app for the presence
of the Java package, com.facebook.react. It is noteworthy that
code Obfuscation will not affect this package name [29].
However, since React Native Java libraries can be included in
apps as a single library but not actually used, we also verified
the presence of a bundle file for the JavaScript-side code within
each app’s APK file. Analyzing the type of a bundle file can
reveal whether it contains Hermes bytecode or JavaScript code.

Results: Our empirical study indicates that 1,068 apps,
accounting for 7.2% of those 14,874 most popular apps
collected from AndroZoo, were developed using the React
Native framework. Of these React Native Android apps, 494
(46.3%) utilized the Hermes engine as the JavaScript runtime
and compiled the JavaScript into Hermes bytecode. In contrast,
among the 60,618 malware collected from VirusShare, there
were 441 apps developed with the React Native framework.
Out of these 441 React Native Android malware apps, only
28 of them used the Hermes engine.

Within the selection of the 14,874 most popular
Android applications, approximately 7.2% have been
created using the React Native framework. The pres-
ence of malware has extended to encompass React
Native applications as well. Furthermore, the employ-
ment of the Hermes engine exhibits lower frequency
among malware apps in comparison to its prevalence
within popular applications.

B. RQ1: How well does REUNIFY enhance Soot-based static
analysis on React Native Android Apps?

Our objective with this RQ is to understand how REUNIFY
enables the static analysis on React Native Android Apps. We
evaluate REUNIFY on those 494 Hermes engine-enabled apps
out of the 1,068 most popular React Native Android Apps from
two perspectives: 1 the number of generated Jimple Code, 2
the number of identified Dalvik-to-Hermes invocation. Since
the implementation of Hermes engine impacts the volume
of code implemented in React Native framework in Android
apps [30], we focused our analysis on popular apps that
adopted the Hermes engine for a fair comparison. Furthermore,
since the Hermes engine has become the default engine of
React Native, our findings offer more valuable insights into the
current state of React Native Android apps using the Hermes
engine. To further assess the practicality of REUNIFY, we
utilized FlowDroid to generate callgraphs for 1,068 popular
React Native apps and 441 React Native malware apps, and



TABLE II
AVERAGE NUMBER OF NATIVE MODULE API AND NATIVE COMPONENT UI

Native

Category Apps Module API Module API
Methods Component UI Component UI

Methods
Popular 494 92 532 55 489

RN Toy App 1 51 213 22 365

TABLE III
AVERAGE NUMBER OF VOLUME OF CODE

Category # apps Soot without ReuNify Soot with ReuNify Difference
# Methods # LOC # Methods # LOC # Added Methods # Added LOC

Popular 494 132 093 1 697 294 162 195 2 879 754 30 102 (+22.79%) 1 182 460 (+69.67%)
RN Toy App 1 43 005 476 859 47 209 632 880 4 204(+9.78%) 156 021 (+32.72%)

TABLE IV
AVERAGE NUMBERS OF NODES AND EDGES BEFORE AND AFTER REUNIFY ON 1,007 MOST POPULAR APPS AND 421 MALWARE APPS

Category # apps without ReuNify with ReuNify Difference
# Nodes # Edges # Nodes # Edges # Added Nodes # Added Edges

Popular Apps 1 007 9 206 70 344 16 940 102 830 7 734 (+84.01%) 32 486 (+46.18%)
Malware Apps 421 6 465 36 572 9 824 48 460 3 359 (+51.96%) 11 888 (+32.51%)

compared the 3 size of the callgraphs before and after
integrating REUNIFY. A diverse set (including both popular
apps and malware apps) of React Native apps can further prove
the effectiveness of REUNIFY.

Volumn of Jimple Code: The quantity and quality of static
analysis results produced by Soot’s framework are heavily
reliant on the availability of Jimple code. With REUNIFY’s
hermeser integrated into Soot framework, an additional class
for Hermes bytecode is created. This class comprises an
average of 30,102 SootMethods with 1,182,460 lines of Jimple
code. According to Table III, with the augmentation of RE-
UNIFY’s hermeser, there are 70% more Jimple statements
generated compared with 1,697,294 lines of code generated
by Soot.

REUNIFY successfully generated the additional Jimple
statement for 452 out of 494 apps. The unsuccessful cases
were due to the customizable nature of the bundle name [31],
which made it difficult to locate the JavaScript-side bundle
file. To improve the reliability of the analysis, future work
should focus on developing more robust techniques for lo-
cating bundle files. For the apps with located bundle files,
all of them were successfully transformed into Jimple code
from Hermes bytecode. Moreover, all SootMethods gener-
ated by REUNIFY’s hermeser passed Soot’s body validation
(<soot.jimple.JimpleBody: void validate()> [32] in Soot), in-
dicating that the generated Jimple code is valid in the Soot
framework. This allows for additional Soot-based analysis on
Hermes bytecode.

Number of Hermes-to-Dalvik invocation: React Native
enables accessing methods on the Java side from the JavaScript
side. As shown in Table II, React Native apps have an average
of 93 Native Module APIs, which contain 569 methods ac-

cessible to JavaScript code, and 52 Native React Components
comprising 477 methods for setting UI attributes. As shown
in Figure 2, the Native Module APIs and Components can be
sourced from the React Native framework, third-party libraries,
or the developer’s own implementation. To determine the
extent of Hermes-to-Dalvik invocations coming from sources
beyond the Core Module APIs and Core Components, we build
a Toy app from the project (React Native CLI Quickstart [33])
in React Native version 0.71. This Toy app only includes the
Core Module APIs and Core Components without any devel-
oper’s code or third-party library. According to Table II, the
most popular React Native Android apps have over twice
the number of Native Module API methods (532 methods)
compared to the React Native Toy app (213 methods) using
React Native version 0.71. With the use of Native Module
API and Native Components, more powerful functionalities (in
terms of performance and access to system resources) can be
exposed to the JavaScript side. It is customary to involve extra
Native Module APIs and Native Components while developing
a React Native Android app.

Size of Callgraph: In static analysis models, callgraph
is a crucial component as it offers a complete perspective
of the program’s behaviour. To evaluate the effectiveness of
REUNIFY in generating callgraphs, we compared the size of
callgraphs produced by FlowDroid with and without the aug-
mentation of REUNIFY, for both popular and malicious React
Native Android Apps. Out of the 1,068 most popular React
Native apps and 441 React Native malware apps, callgraphs
get generated successfully on 1,007 and 421 apps respec-
tively, with or without the use of REUNIFY. Nonetheless, in
some cases, due to time limitations or obfuscation techniques,
Callgraph failed to be generated on 61 popular apps and 20



malware apps.
We first report the average number of nodes (i.e., the

number of methods) and edges (i.e., the number of potential
invocations) in the callgraphs obtained before and after having
applied REUNIFY. The call-graph augmentations introduced
by REUNIFY can be seen in Table IV, where the number of
apps affected by the changes is represented by the # apps
column. We observe that all apps’ callgraphs are enlarged
by the use of REUNIFY (1,007 and 421 for popular and
malware apps, respectively). Additionally, we notice that the
number of nodes and edges uncovered with REUNIFY is
higher for popular apps than for malware apps: 7,734 vs 3,359
on average per app for nodes and 32,486 vs 11,888 for edges.
This highlights that traditional static analyzers that do not
consider the executable code in React Native apps miss a
substantial number of nodes and edges in their call graphs.

By considering the mechanism of React Native, REUNIFY
can identify previously unreachable Java methods that are
now reachable. The number of such previously unreachable
methods is highly correlated with the number of Hermes-to-
Dalvik invocations. The discovery of newly reachable nodes is
significant because it allows static analyzers to avoid treating
them as dead code.

Answer to RQ1: Soot tends to miss a significant
portion of executable code when analyzing React
Native Android apps. However, by converting Her-
mes bytecode to Jimple, there is a 70% increase in
the number of lines of Jimple code in Soot. Taking
into account the React Native mechanism on the
Java side, popular apps experience an increase of
approximately 84% in new nodes for callgraph, while
malware apps experience an increase of around 52%
in nodes for callgraph.

C. RQ2: How effective is REUNIFY in finding sensitive data
leaks in React Native Android Apps?

In this research question, we demonstrate the capability
of REUNIFY in finding potential privacy leaks in real-world
React Native Android apps.

Experimental setup: In order to evaluate the effectiveness
of REUNIFY in finding privacy leaks, we conducted experi-
ments on both popular apps and malware to demonstrate its
effectiveness. Specifically, we tested REUNIFY on 1,068 of
the most popular React Native Android apps, as well as 441
React Native malware instances detected in the year 2022
and sourced from VirusShare[27]. In order to ensure a fair
comparison, we utilized the default sources and sinks provided
by FlowDroid. However, it should be noted that REUNIFY
supports custom sources and sinks tailored to specific needs
and interests, such as those pertaining to JavaScript. Sources
and sinks in the context of privacy leaks refer to the entry
and exit points in an app’s code where data can enter and
leave the system. FlowDroid is capable of identifying data
flows from sensitive sources to potentially unsafe sinks. It is
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Fig. 7. Distribution of the number of leaks detected by FlowDroid with and
without REUNIFY

important to keep in mind that dataflow analysis can be both
time and memory intensive, and therefore, for each app, we
set a maximum time limit of 30 minutes for FlowDroid to
complete its analysis.

Findings: FlowDroid was executed successfully on 1,007
out of the 1,068 most popular apps and on 421 out of the
441 malware apps, with or without REUNIFY augmentation.
However, due to time constraints or obfuscation techniques,
FlowDroid failed to run on 61 of the most popular apps and
20 of the malware apps. In total, applying REUNIFY resulted
in the detection of 2,690 (4,892 � 2,202) additional privacy
leaks for popular apps and 827 (3,576 � 2,749) additional
privacy leaks for malware apps, respectively. The average
number of leaks is indicated by the

L
labels in Figure 7(a) and

Figure 7(b), respectively. On average, Figure 7(a) indicates that
by incorporating REUNIFY, an extra 2 privacy leaks (totaling
4 leaks) were identified in popular apps compared to only
running FlowDroid, which could detect only 2 leaks. Similarly,
as shown in Figure 7(b), with the augmentation of REUNIFY,
an additional 2 privacy leaks were detected on average, making
a total of 8 leaks, compared to only running FlowDroid (i.e.,
6 leaks) for those malware apps. It is not surprising that more
leaks are detected from malware apps than popular benign
apps, as the number of leaks is highly reflective of potential
issues in an app.

Types of newly detected privacy leaks: After identifying
privacy leaks additionally discovered by REUNIFY, we
further categorize the sources and sinks according to
SuSi’s classification [34] to facilitate understanding of
each privacy leak. For any sources or sinks that were
not classified, we manually assigned categories based on
the functionality of their classes and methods. Among
them, the most common sink type was the Replace sink,
represented by the method <java.lang.String: java.lang.String



Fig. 8. Sankey diagram of all newly detected privacy leaks.

replace(java.lang.CharSequence,java.lang.CharSequence)>.
The method, replace, is frequently used to substitute a
particular sequence of characters in a string with another
sequence of characters. However, if sensitive data (e.g., user
credentials) is included in either the original or replacement
character sequences, this information can be inadvertently
leaked. We found that for both popular and malware apps,
the most common type of leaked information was data stored
in the database. The second most common type of leaked
information for popular apps was Wi-Fi-related information
including Service Set Identifier (SSID) and MacAddress.
For malware apps, the second most common leaked type
of source information was telephony information, including
Device Id, Line1Number (phone number of the device’s SIM
card), subscriber ID, and SimSerialNumber. For both popular
and malware apps, more than 98% of sources that leaked
from the method, replace, come from the top two most
common sources as described above.

To better comprehend and visualize additional privacy leaks
discovered by REUNIFY, we have created a Sankey diagram
(Figure 8) that includes newly detected leaks for both popular
and malware apps while excluding the leaks with replace
as sinks. It can be observed from Figure 8 that the pri-
mary sources of privacy leaks are Database, Location, and
Telephony. The sensitive information is predominantly leaked
to SharedPreferences, ContentResolver, and Activity. In fact,
our analysis shows that the use of REUNIFY resulted in a
significant increase in the number of detected sensitive data
leaks for both popular Android apps and malware.

Answer to RQ2: REUNIFY is effective for identify-
ing data leaks that were previously unseen. Specifi-
cally, on average, 2 additional potential leaks can be
detected in both popular apps and malware.

V. THREATS TO VALIDITY

Analyzing C++ code. JavaScriptInterface (JSI) is a module
in React Native’s new architecture that can enable C++ code
to be invoked from the JavaScript side, which could affect
the comprehensiveness of our study. However, the usage of
JSI and C++ is still experimental, and the implementation of
C++ is being gradually automated by the Codegen module
[35] in the React Native framework. Since C++ code is not as
prevalent as Java code at present, REUNIFY plans to gradually
incorporate support for C++ code in the future

Transforming Hermes bytecode to Jimple. The Hermes
engine has been used as the default engine for React Native
applications. The JavaScript code used in the development of
React Native applications is compiled into Hermes bytecode.
One feature of the REUNIFY framework is its capability
to abstract different versions of Hermes bytecode into the
Jimple statements. Due to the dynamic and intricate program
representation of Hermes bytecode, the Jimple code generated
from it has some limitations when it comes to handling com-
plicated point analysis, such as the taint analysis. In this study,
REUNIFY has interpreted the Hermes opcodes that pertain
to conditional branching and function declaration during the
transforming process. Certain static techniques, such as Single
Static Assignment (SSA) and intraprocedural Control Flow
Graph (CFG), can be implemented on the produced Jimple
code. In our prospective endeavors, we would like to better
interpret Hermes opcodes into Jimple, hence facilitating the
execution of more complex static analysis.

Method Invocation from the JavaScript Side. One major
limitation of REUNIFY is its inability to accurately model the
behavior of functions in Hermes bytecode, which is due to
the lack of a point analysis technique for Hermes bytecode.
The points-to analysis in Soot cannot directly work on the
Jimple code generated from Hermes bytecode, mainly due to
the dynamic-language feature and the presentation of Hermes
bytecode. However, we present a solution that utilizes a
control-flow-insensitive technique to infer the type of the
register value, which can identify some invocations for the
Java-side code and recover build-in API methods (e.g., con-
sole.log(), alert(), JSON.parse(), etc.). Nonetheless, it remains
a challenge to verify if the Hermes-to-Dalvik identification
has yielded correct links. One possible way to verify this
would be to execute the code section to trigger the native
code and ensure that the correct information is yielded by
Hermes-to-Dalvik indentification. However, this is beyond the
scope of this study. Therefore, we have made the hypothesis
that the correct results are yielded from Hermes-to-Dalvik
identification.

VI. RELATED WORK

Java-based Android Apps Analysis. Li et al [6] provide
a comprehensive survey of Android apps, focusing on static
analysis approaches. Different static analysis approaches are
utilized to detect compatibility issues [35, 36, 37, 38, 39]
and other functional or non-functional faults [40, 41, 42,
43, 44, 45]. Moreover, static analysis can be leveraged to



collect information in apps towards improving dynamic testing
approaches [46, 47, 48, 49]. The popular artifacts adopted
by current researchers are MalloDroid by Fahl et al. [50],
which detects improper use of transport layer security in apps;
FlowDroid by Arzt et al. [19], which is able to find privacy
leaks by inspecting illicit information flow; and IccTA by Li
et al. [21], which extends FlowDroid by accounting for inter-
component privacy leaks. Instead of focusing on Java-based
Android apps analysis, our work has taken a step forward
by proposing an approach to take an additional programming
language, Hermes bytecode/JavaScript (used in React Native
Android Apps), into consideration. We expect to provide the
community with a readily usable framework, which enables
researchers and practitioners to complete their analyses on
React Native Android Apps.

Analysis of Multiple Languages in Android App. The
research emphasis has been on analyzing languages used
in Android Apps beyond just Java, and also on conducting
cross-language analysis. Lee et al. [18] analysed the inter-
communication between Android Java and JavaScript and
presented the framework, HybriDroid, to detect bugs and
information leaks in hybrid apps. However, HybriDroid is
Android version sensitive and only focuses on the bridge com-
munication between Android Java and JavaScript (the other
communication approach is callback communication). Alam
et al. [51], in 2016, proposed DroidNative, which can perform
Android malware detection considering both the bytecode and
the native code. What’s more, NDroid [52], TaintArt [53], and
PolyCruise [54] were proposed for dynamic taint analysis so
as to track sensitive information flows. JN-SAF and Jucify
[20, 55] are also proposed as an inter-language static analysis
framework to detect sensitive data leaks in Android apps.
The Jimple statements produced by Jucify are insufficient and
unable to capture the complete implementations of the native
functions, which poses a challenge in commencing further re-
search (inter-procedural analysis) on the native code for whole
program analysis. All the aforementioned tools, however,
are task-specific. They also, typically, perform their analyses
separately for bytecode and native code, and later merge
the outputs to present unified analysis results. In contrast,
REUNIFY is proposed to unify the representation before task-
oriented analyses, which empowers popular analysis pipelines
to be directly adopted on the output of REUNIFY.

VII. CONCLUSION

As the use of React Native Framework continues to increase
in the development of Android applications, it is no longer
feasible to disregard it for static analysis. Our approach, RE-
UNIFY, considers the mechanism of React Native framework.
By manipulating code at the level of Soot IR, REUNIFY
effectively augment the current Soot-based static analysis tools
for React Native App analysis. Our evaluation of the most
popular real-world React Native Android programs shows that
REUNIFY significantly enhances static analysis and call graph
comprehensiveness. Furthermore, when we ran FlowDroid
with REUNIFY, we discovered an average of two additional

privacy leakages for 1,007 most popular React Native Android
Apps. We are confident that these findings establish our
approach as a necessary improvement to the well-established
static analysis for React Native Android programs.
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