
Automated Testing of Definition-Use Data Flow for
Multithreaded Programs

Xiaodong Zhang∗, Zijiang Yang†, Qinghua Zheng∗, Pei Liu∗, Jialiang Chang†, Yu Hao∗ and Ting Liu∗,
∗Ministry of Education Key Lab for Intelligent Networks and Network Security,

Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China

Email: {xdzhang,pliu,yhao}@sei.xjtu.edu.cn, {qhzheng, tingliu}@mail.xjtu.edu.cn
†Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA,

Email: {zijiang.yang,jialiang.chang}@wmich.edu

Abstract—With the advent of multicore processors, there is
a trend towards multithreading to take advantage of parallel
computing resources. Due to greatly increased complexity, pro-
grammers need effective testing methodology that can thoroughly
test multithreaded programs. There has been significant progress
based on symbolic execution that attempts to exhaustively ex-
plore all the intra-thread paths and inter-thread interleavings.
However, such testing approach faces two insuperable challenges.
Firstly, exploring an astronomically large number of paths and
interleavings limits its scalability. Secondly, a path itself does
not directly help programmers understand program behavior.
In this paper, we propose an alternate testing methodology that
focuses on definition-use data flow instead of paths/interleavings.
Such approach not only leads to orders of magnitude reduction
in testing complexity, but also gives programmers direct help on
examining the shared variable usage in a multithreaded program.

Index Terms—Multithreaded Program; Symbolic Analysis;
Guided Execution; Definition-Use

I. INTRODUCTION

Concurrent programming is a key technique to unleash the

full potential of present and future generations of parallel

computing systems based on multi-core processors. However,

the intrinsic nondeterminism of parallel execution can result

in concurrency errors that are difficult to detect, reproduce,

and debug. While most mainstream programming languages

today support concurrency, their testing tools are designed

and optimized primarily for sequential software development.

To address this issue, recent work exploits symbolic-based

analysis to handle the challenges unique to multithreaded

programs.

Symbolic execution [1–6] has recently regained prominence

as a technique for various software engineering tasks [7, 8]. It

uses symbolic inputs instead of concrete inputs as the program

inputs to drive program execution. Through encoding the path

condition as a quantifier-free, first-order logic formula and

then deciding the formula with a constraint solver, symbolic

execution can systematically explore the paths of a sequential

program and generate the corresponding test inputs. Inspired

by the success, recent research [9, 10] extends the approach to

systematically explore the intra-thread paths and inter-thread

interleavings of multithreaded programs. Indeed, the capability

of exhaustive coverage can detect subtle bugs that evade ad-

hoc testing approaches.

However, even for sequential programs, exhaustive path

coverage is often not achievable due to the inherent path
explosion problem. That is, the number of feasible paths in

a program usually grows exponentially with the increase of

program size. Even for a medium-size program, systematically

exploring the paths is prohibitively expensive. The scalability

issue is exaggerated by multithreading, where exhaustive path

and interleaving coverage leads to even more intractable

double-exponential growth. Although various heuristics have

been proposed, double-exponential growth remains an insu-

perable challenge for exhaustive path/interleaving coverage.

Besides poor scalability, the other reason preventing its

adoption is that programmers do not directly gain insight

about a concurrent program through path/interleaving cover-

age. Unless a path triggers a bug such as assertion failure,

a programmer rarely examines any explored path and thus

misses the opportunity to detect hidden issues not under

scrutinization. This is because the goal of path/interleaving

coverage is to execute as many paths as possible. Detection of

failures becomes a side-effect during the exploration. Consider

the code snippet shown in Figure 1 with three threads and

two branches per thread. A complete traversal of the paths

and interleavings does not reveal any visible failures. Except

gaining certain assurance, a programmer’s knowledge about

the program does not change after the testing.

For a multithreaded program, different threads share infor-

mation via reading and writing of shared variables. This is the

reason that makes multithreaded program hard to comprehend

and the source of many concurrency bugs [11]. Although

concurrency bugs may appear less frequently than sequential

bugs, they can cause more severe consequences, such as data

corruption, hanging systems, or even catastrophic disasters.

Many of the concurrency errors share a common characteristic:

when triggered, they usually are followed by an incorrect data

flow, i.e., a read instruction uses the value from an unex-

pected definition. This type of errors is categorized as order

violations. According to a study on real-world concurrency

bug characteristics [12], order violations account for one third

of all non-deadlock concurrency bugs. However, unlike data

races [13–15] and atomicity violations [16–19] that receive

plenty attention, order violation bugs have been neglected [11].

According to [11], a program is likely to have a bug if

10th IEEE International Conference on Software Testing, Verification and Validation

978-1-5090-6031-3/17 $31.00 © 2017 IEEE

DOI 10.1109/ICST.2017.23

172

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

the following three definition-use (DefUse) invariants are not

maintained.

• Local/Remote invariants. A read only uses definitions

from either the local thread or a remote thread.

• Follower invariants. When there are two consecutive

reads upon the same variable from the same thread, the

second always uses the same definition as the first.

• Definition set invariants. A read should always use defi-

nition(s) from a certain set of writes.

Although a violation of the three invariants does not nec-

essarily mean a bug, we do believe that it warrants careful

examination when shared variables use different definitions in

different runs. For example, although a complete path/inter-

leaving traversal of the program in Figure 1 does not produce

any visible bugs such as assertion failures, our approach

shows inconsistent DefUse relations. Therefore, we believe

our testing methodology not only detects order violations but

also gives programmers insight on how data are communicated

between threads.

T0 T1 T2

void ∗ t1(a){ void ∗ t2(b){ void ∗ t3(c){
if(a > 1) if(b > 1) if(c > 1)

x = x+ 2; x = x ∗ 2; x = x2;
else else else

x = x+ 3; x = x ∗ 3; x = x3;
if(x > 8) if(x > 8) if(x > 8)

x = x ∗ 2; x = x2; x = x+ 2;
else else else

x = x ∗ 3; } x = x3; } x = x+ 3; }

Fig. 1. A multithreaded program with three threads. The initial value of the
shared variable is x = 1, and a, b, c are local input variables.

In this paper, we propose a testing methodology that targets

DefUse data flow. Our testing approach encodes an execution

trace into first order logic formulas and find new DefUse

relations by leveraging an SMT solver to solve the formulas.

Then, it explores new paths that may contain unexplored

DefUse pairs. The goal of our DefUse testing is to find all the

DefUse pairs for shared variables. Such goal makes DefUse

testing orders of magnitude cheaper than path/interleaving

testing due to the following two reasons: (1) it considers

instruction combination between pair-wise threads rather than

among all the threads, and (2) each statement within a thread

may be considered in isolation rather than an enumeration of

all the paths.

Considering the interleaving among the three threads in

Figure 1, the number of paths is 64 (4 × 4 × 4). If we

want to enumerate all the possible DefUse relation, we need

to cover all the interleavings between the three pairs of the

threads (T0 ‖ T1, T1 ‖ T2, T2 ‖ T0). The number of paths

between a pair is 16 (4 × 4), and the total number of paths

to enumerate all the DefUse is 48 (16 × 3). If we extend

the example to N threads with M if-then-else branches

per thread, a complete interleaving/path coverage requires a

traversal of 2MN paths, while a complete DefUse coverage

needs exploring C2
N × (2M × 2M) paths. This is a reduction

from O(2MN) to O((MN)2). Of course, most programs have

more complicated structure than the trivial program shown

in Figure 1. For a particular DefUse pair to manifest, it

may require cooperation from other statements within the two

threads as well as careful synchronization with other threads.

In summary, this paper makes the following contributions.

1) We propose a new testing methodology for multi-

threaded programs. By exhausting all possible DefUse

relations, it offers insight about multithreading at a much

lower cost than path/interleaving coverage.

2) We develop algorithms that enables automated system-

atic DefUse coverage for multithreaded programs.

3) We have implemented a tool called STEM (Systematic

Testing of dEfuse for Multithreaded programs) and

conducted experiments.

The rest of the paper is organized as follows. Relevant terms

used in this paper are defined and explained in Section II,

followed by a formal presentation of algorithms in Section III.

The experimental results are reported in Section IV. Section V

describes the threats to validity. Section VI reviews the related

work and Section VII concludes the paper.

II. DEFINITIONS

In this section we define and explain relevant terms used in

the description of the DefUse testing algorithms.

DefUse pair: An assignment statement is a definition

of variable v if v is on the left-hand-side of the statement. If

variable v is on the right-hand-side of a statement, v has a use

at this statement. A reaching definition for a given instruction

is another instruction, the target variable of which reaches the

given instruction without an intervening assignment. We refer

to a use Rv
i (read of variable v at statement i) and its reaching

definition W v
j (write of variable v at statement j) as a DefUse

pair, denoted as W v
j → Rv

i .

Potential DefUse pair: Let W v
i be a write to vari-

able v at statement i and Rv
j a read of at statement j. A static

analysis usually cannot decide W v
i → Rv

j as the analysis is not

precise. We define a potential DefUse pair, denoted

as W v
i ⇀ Rv

j , to indicate the definition at W v
i may reach Rv

i ,

if during an execution Line j may happen after Line i, and

there is no other writes to v that definitely happen between the

two lines. It is an over-approximation so we have W v
i ⇀ Rv

j

if W v
i → Rv

j , but not vice versa.

Explicit DefUse pair: A DefUse pair that is en-

countered during a concrete execution.

Implicit DefUse pair: A DefUse pair that is in-

ferred by the symbolic analysis component.

Escort branch pair: A branch b
T/F
p dominates an

instruction s if an execution of b
T/F
p inevitably leads to the

execution of s. The superscript indicates whether the statement

at Line p takes the True or False branch. Let B
T/F
p

denote the set of statements dominated by b
T/F
p . As shown

in Figure 2, bF1 dominates Lines 4 and 5 and BF
1 includes

173

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

them. Two branches b
T/F
p and b

T/F
q is called an escort

branch pair, denoted as b
T/F
p ⇒ b

T/F
q , if there exists

W v
i ∈ B

T/F
p ∧ Rv

j ∈ B
T/F
q , and W v

i ⇀ Rv
j . Note that

there can be more than one pair of shared variable accesses

dominated by the two branches.

T0 T1 T2

void ∗ t0(a){ void ∗ t1(b){ void ∗ t2(c){
1 : if(a > 1)//b1 6 : if(b > 5)//b6 14 : if(c < 2)//b14
2 : z = x+ 2; 7 : b = y + 1; 15 : d = 1;
3 : else 8 : else 16 : else
4 : z = x− 2; 9 : b = y − 1; 17 : d = 0; }
5 : x = 3; } 10 : if(x > 2)#b10

11 : y = z + 1;
12 : else
13 : x = z − 1; }

Fig. 2. A multithreaded program with three threads. There are three local
inputs a, b, c and three shared variables x, y, z. The initial values are x =
y = z = 0.

III. DEFUSE TESTING ALGORITHMS

As depicted in Figure 3, our DefUse testing framework,

STEM, integrates static analysis, dynamic analysis and sym-

bolic analysis. Given a multithreaded C program, STAM aims

to produce a DefUse database that can present the DefUse

pairs to users or answer queries from users.

The goal of the static analysis component is to locate escort

branch pairs that are later used to steer the dynamic executions.

In Section III-A we describe the intuition why they are useful.

The procedure terminates once all the escort branch pairs are

considered.

Except the first execution that is random, the dynamic

analysis component conducts guided executions under an

input/thread schedule vector that is computed by symbolic

analysis. The DefUse pairs encountered during the concrete

execution are recorded. This component passes two pieces of

information to the symbolic analysis component: the executed

trace π and a set of alternate branches. An alternate branch,

defined in Section III-D, is used to compute an input/thread

schedule vector that guides a future execution.

Symbolic analysis encodes a trace π as first order logic

formulas that can be solved by off-the-shelf SMT solvers [20].

The formulas are used to infer program behavior under input

and thread scheduling different from π. DefUse pairs that

are hidden from dynamic analysis can be discovered by such

predicative analysis. An appropriate encoding of π and the

alternate branches are used to decide a future execution. The

solution to such formula, if satisfiable, represents a pair of

input and thread schedule vectors. An execution under the

input/schedule vector leads to an execution that is not only

different from previous explicitly and implicitly explored paths

but also may reveal new DefUse pairs.

In the rest of the section, we illustrate the key steps of

our algorithm through a motivating example that is given

in Figure 2. There are three threads T0, T1, T2 with shared

variables x, y, z and local inputs a, b, c. In this paper we

represent branches with their line numbers as subscripts and

T or F as superscript. For example, bF6 denotes the else
branch of the if-then-else statement at Line 6. If we do

not know whether then or else branch is taken at branch p,

we represent it as b
T/F
p , and use b

F/T
p to denote its negation.

In the following we list the symbols that are in the algorithm

and the running example. All the sets are initially empty except

Ω.

• Γ: the set of test cases that produce actual DefUse pairs.

Its items are in the format of W x
i → Rx

j@(�i, �s). For ease

of understanding, we omit the input and thread schedule

vectors in our description.

• Γex
π : the set of explicit DefUse pairs that are detected

during the execution of π.

• Γim
π : the set of implicit DefUse pairs that are computed

based on a symbolic predicative analysis of π.

• Ω: the set of input and thread schedule pairs (�α, �β). Pro-

duced by the alternate branch computation component,

its items guide dynamic executions.

• Σ: the set of escort branch pairs of the program under

testing. An item b
T/F
p ⇒ b

T/F
q ∈ Σ indicates potential

DefUse pairs in the two branches, which needs confirma-

tion or falsification from dynamic or symbolic analysis.

• Σex
π : the set of escort branch pairs covered by Γex

π on π.

• Σim
π : the set of escort branch pairs covered by Γim

π on π.

• ΣA
π : the set of escort branch pairs if a branch of π was

reversed.

• WSπ: the working set of to-be-covered escort branch

pairs detected by the execution of π.

A. Static Analysis

The whole program analysis component computes a set Σ

of the escort branch pairs. For a b
T/F
p ⇒ b

T/F
q ∈ Σ, the

alternate branch computation component in symbolic analysis

strives to produce a path π that explores both b
T/F
p and b

T/F
q .

If the path is found, W v
i and Rv

j that are dominated by the

pair of branches are both executed in π. Note that we do not

require a path that the definition of W v
i reaches Rv

j . This is

because the predicative analysis component can infer program

behavior by considering different ordering of the instructions

in π. Since in our algorithm dynamic analysis explores new

paths with different branches and symbolic analysis explores

new paths with different instruction ordering, we only need

to record branch information in Σ as the items in the set are

used to guide dynamic execution.

For the running example shown in Figure 2, we have Σ =
{bF1 ⇒ bT10, b

T
1 ⇒ bT10, b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 , b

T
1 ⇒ bF10, b

F
10 ⇒

bT1 }. The reason that bT1 �⇒ bT6 is because no potential DefUse

pairs are dominated by the two branches.

B. Dynamic Analysis

We maintain a set Ω to guide dynamic executions. An item

(�α, �β) ∈ Ω consists of an input vector �α and a (thread)

schedule vector �β. In our algorithm �β is usually partial so

an execution under (�α, �β) has a deterministic prefix and then

becomes non-deterministic afterwards. Consider the example

174

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

���������	

�����	

����������

��������
��

���������

�����	����

�������
����
���

��������������
�������

������	
���������

	��� ���� ��������!��
����

���������!�
����"���

������

�����	�����

#����
��� ���
����"���

��������
��

������	����"���
��������
��

���������

�����	����

������	
���������

��������!��
����

�"�����	����"���

���������

�����	

����������

��������������
�������

���������!�
����"���

��������
��

�"�$����	����"���

�������

Fig. 3. The Synergistic Analysis Framework for DefUse Testing.

Algorithm 1 Path GuidedExecution (Program P , Branch-

PairSet Σ, InputScheduleSet Ω, DefUseSet Γ, TraceSet

Tested)

1: (�α, �β) = Ω.remove();

2: π = Execute(P, �α, �β);
3: if π ∈ Tested then
4: return NULL;

5: else
6: Tested.add(π) ;

7: Let Γex
π be the set of DefUse pairs covered in π;

8: Γ = Γ ∪ Γex
π ;

9: Let Σex
π be the set of branch pairs covered in π;

10: Σex
π = BranchPair(Γex

π);
11: Σ = Σ− Σex

π ;

12: return π;

13: end if

in Figure 2, the input/schedule vector pair (〈a = 1, b = 2, c =
3〉, 〈T0L1, T0L4, T1L6, T1L9, T1L10, T1L13〉) leads to an exe-

cution 〈1F , 4, 6F , 9, 10F , 13, 14F , 17, 5〉. The execution is not

unique as the thread scheduling becomes random after the first

six steps. Another execution 〈1F , 4, 6F , 9, 10F , 13, 5, 14F , 17〉
is also valid. However, any execution produced by the in-

put/schedule vector pair guarantees to cover the escort branch

pair bF1 ⇒ bF10. Our algorithm ensures consistency between �α
and �β so there is at least one feasible execution. For example,

(〈a = 1, b = 2, c = 3〉, 〈T0L1, T0L2〉) is not valid for the

running example.

Initially Ω contains one item that assigns random values to

program input without any restriction on the thread schedule,

which leads to a random execution. It’s like performing a

concolic execution that treats program variables as symbolic

variables along a concrete execution path. More input/schedule

vectors are added to Ω by symbolic analysis. Figure 4 gives the

first random execution trace π1 under the input/schedule vector

(〈a = 2, b = 2, c = 3〉, 〈〉) in SSA (Single Static Assignment)

form for the example shown in Figure 2. The explicit DefUse

pairs are Γex
π1
= {W x

0 → Rx
2 ,W

x
0 → Rx

10,W
z
2 → Rz

13}, where

W x
0 indicates the intial assignment to x and Rx

10 indicates the

use for x at Line 10. These DefUse pairs are recorded in Γ.

We project Γex
π1

to the branch pair Σex
π1
= {bT1 ⇒ bF10}, which

is removed from Σ.

0 : xw
0 = 0, yw0 = 0, zw0 = 0

1 : if(a0 > 1)//true
2 : zw1 = xr

1 + 2;
6 : if(b0 > 5)//false
9 : b1 = yr1 − 1;
10 : if(xr

2 > 2)//false
13 : xw

3 = zr2 − 1;
14 : if(c0 < 2)//false
17 : d0 = 0;

Fig. 4. SSA form of π1

C. Predicative Analysis

Algorithm 2 PredicativeAnalysis (Trace π, DefUsePairSet Γ)

1: Γim
π = Σim

π = ∅;
2: Encode partial order constraint ϕpo;

3: Encode program semantics constraint ϕsm;

4: Encode interleaving matching constraint ϕim;

5: ϕπ = ϕsm ∧ ϕpo ∧ ϕim;

6: for each W x
i ⇀ Rx

j ∈ Σπ do
7: Encode DefUse constraint ϕdu for W x

i ⇀ Rx
j ;

8: if ϕπ ∧ ϕdu is satisfiable then
9: Γim

π = Γim
π ∪ {W x

i → Rx
j };

10: end if
11: end for
12: Σim

π = EscortBranchPair(Γim
π);

13: Σ = Σ− Σim
π ;

14: Γ = Γ ∪ Γim
π ;

In a multithreaded program, the number of paths under

a fixed input can be exponential due to non-deterministic

thread schedules. It is infeasible to explicitly execute all such

interleavings. In order to alleviate the problem we exploit pred-

icative analysis to enlarge the effectiveness of an execution.

The effect of such analysis on π is the detection of the DefUse

pairs that are not manifested in π. For example, the execution

trace π1 in Figure 4 shows that W x
13 �→ Rx

2 , as the write

happens after the read. However, predicative analysis on π1 is

175

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

able to confirm W x
13 → Rx

2 . In fact, as shown in Table I, the

predicative analysis component detects two implicit DefUse

pairs that are not manifested in π1.

The predicative analysis component transforms an execution

trace π into a quantifier free first order logic formula:

ϕπ = ϕpo ∧ ϕsm ∧ ϕim, (1)

where ϕpo, ϕsm, and ϕim denote the partial order constraint,

program semantics constraint and interleaving matching con-

straint, respectively. Let ϕdu be DefUse constraint that con-

strains the ordering if a DefUse pair is valid. The intersection

ϕπ ∧ ϕdu infers program behavior under a different thread

scheduling from the actual one executed by π, which covers

current DefUse pair du.

Partial Order Constraint (ϕpo). This constraint specifies the

potential ordering of the instructions in an execution trace π. In

this paper, we consider sequential consistency memory model

only. Let oi represent the possible location of instruction i in

a valid execution. If instruction i happens before instruction j
in π and both belong to the same thread, we enforce oi < oj .

For example, the partial order constraint for the SSA trace

given in Figure 4 is ϕpo :

o1 < o2∧
o6 < o9 < o10 < o13∧
o14 < o17.

(2)

Note that it does not mandate Line 1 happens before Line 6

or Line 14.

Besides the intra-thread ordering, the inter-thread ordering

is guarded by synchronization primitives. In multithreaded

programs, the most popular synchronization operations are

lock/unlock and wait/signal. Consider two lock/unlock pairs

on the same mutex. The following constraint mandates that

one pair must be executed either before or after another:

ϕL[m]
po =

∧

li/ui,lk/uk∈L[m]

o(ui) < o(lk) ∨ o(uk) < o(li) (3)

where L[m] denotes the set of lock/unlock pairs on mutex m,

and o(x) represents the order of synchronization operation x.

Given a condition variable cd, let WT be the set of wait

operations on cd, and SG the set of signal operations on cd.

The constraint for wait/signal is:

ϕ
W [cd]
po = { ∧

w∈WT

∨
s∈SG

(ow < os < ow′ ∧mw
s = 1)}

∧
ϕWT
SG

∧
ϕSG
WT

(4)

where ow′ denotes the next event of wait on cd immediately

after w in the same thread, ow < os < ow′ indicates that a

signal operation s must be executed between w and w′, and

mw
s = 1 flags that s is mapped to w. Equation 5 defines ϕWT

SG

and ϕSG
WT , in which ϕWT

SG enforces that each wait operation

w needs to map to at least one signal operation, and ϕSG
WT

restricts that each signal operation s signals at most one wait

operation.

ϕWT
SG =

∧

w∈WT

{{ ∑

s∈SG

mw
s } ≥ 1}

ϕSG
WT =

∧

s∈SG

{{ ∑

w∈WT

mw
s } ≤ 1} (5)

Constraints on other types of synchronization primitives

are modeled similarly. The conjunction of these intra- and

inter-thread constraints relaxes the total order observed in an

execution trace π.

Program Semantics Constraint (ϕsm). The constraint maps

executed individual instructions to corresponding formula.

We skip detailed presentation as it requires mapping rules

for complete LLVM syntax. However, the mapping rules

are straightforward. Equation 6 gives the program semantics

constraint for π0 shown in Figure 4. Note that ϕsm enforces

the same control flow as a derivation leads to an execution

with instructions unknown to a trace. That is, all the executions

inferred from π take the same branches as π.

a0 = 1 ∧ b0 = 2 ∧ c0 = 3∧
xw
0 = 0 ∧ yw0 = 0 ∧ zw0 = 0∧

a0 > 1 ∧ zw1 = xr
1 + 2∧

¬(b0 > 5) ∧ b1 = yr1 − 1 ∧ ¬(xr
2 > 2) ∧ xw

3 = zr2 − 1∧
¬(c0 < 2) ∧ d0 = 0

(6)

Interleaving Matching Constraint (ϕim). The program se-

mantics constraint considers each thread individually. In mul-

tithreaded programs different threads communicate data via

shared variables. The complexity of multithreaded programs

is due to the non-deterministic nature of such communication.

The purpose of interleaving matching constraint is to enumer-

ate all possible matchings between read and write instructions

of shared variables. Consider a shared variable v. Let R(v)
and W (v) be the sets of reads and writes on v, respectively.

We use vr to denote the read of v at instruction r, and vw
the write of v at instruction w. In addition, let or and ow be

the order variables of r and w. Equation 7 gives interleaving

matching constraint. It specifies that for a shared variable v,

vr reads the value of vw if r is executed after w, and there

are no other writes to v in between.

ϕim =
∧

v∈V

∧
r∈R(v)

∨
w∈W (v)

{(vr = vw ∧ ow < or)∧
∧

x �=w∈W (v)

(ox < ow ∨ or < ox)} (7)

Equation 8 gives a formula that enumerates three possible

read-write relations for xr
1 and its corresponding writes in π1.

{xr
1 = xw

0 ∧ o0 < o2 ∧ (o13 < o0 ∨ o2 < o13)}∨
{xr

1 = xw
2 ∧ o13 < o2 ∧ (o0 < o13 ∨ o2 < o0)}∨ (8)

DefUse Constraint (ϕdu). For a read vr and a write vw that

do not form a DefUse pair in π, they may form a DefUse pair

having the input or thread schedule been changed. In order to

find such pairs we first scan an executed trace to locate po-

tential DefUse pairs. For example, the set of potential DefUse

pairs in π1 given in Figure 4 is {W z
0 ⇀ Rz

13,W
x
13 ⇀ Rx

2}.
Let Σπ be the set of potential DefUse pairs in π. Equa-

176

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

tion 9 gives the formula for DefUse constraint. Partial DefUse

constraint for π1 in Figure 2 is given in Equation 10. After

solving the two DefUse constraint formulas with Z3 [20] in

Equation 10, we get two feasible implicit DefUse pairs from

their solutions, which are collected into Γim
π1

= {W z
0 →

Rz
13,W

x
13 → Rx

2}. Then we project Γim
π1

to the branch pair

Σim
π1

= {bF10 ⇒ bT1 }, which is also removed from Σ.

ϕdu[W
v ⇀ Rv] = (ow < or) ∧

∧
x�=w∈W (v)

(ox < ow ∨ or < ox)

(9)
ϕdu[W

z
0 ⇀ Rz

13] : o0 < o13 ∧ (o13 < o2 ∨ o2 < o0)
ϕdu[W

x
13 ⇀ Rx

2] : o13 < o2 ∧ (o0 < o13 ∨ o2 < o0)
(10)

D. Alternate Branch Computation

The goal of the alternate branch computation component is

to find to-be-explored executions and compute input/schedule

vector pairs that enforce these executions. A to-be-explored

path must satisfy the following three properties:

• it has not been executed by dynamic execution, and

• it has not been inferred by predicative analysis, and

• its execution may find new DefUse pairs.

Let πB = {bT/F
1 . . . b

T/F
k } be the set of branches in an

explored path π. For any π′ that is inferred from π by predicate

analysis, we have π′
B = πB , even though the orders of the

branches in π and π′ are different. In addition, for any π′ such

that π′
B = πB , π′ has the same set of instructions as π does.

According to our algorithm, its implicit DefUse pairs must be

inferred by the predicative analysis component. Based on this

observation, a path whose set of branches is different from all

dynamically executed paths satisfies the first two properties.

Let π = 〈. . . bT/F
p . . . b

T/F
q . . . b

T/F
k . . .〉 be an executed

trace with k branches. By reversing b
T/F
p to b

F/T
p , we observe

the set of statements B
F/T
p dominated by b

F/T
p . If there are

any potential DefUse pairs between the statements in B
F/T
p

and B
T/F
q , b

T/F
q in π and b

F/T
p forms an escort branch pair.

Any execution following π′ = 〈. . . bF/T
p . . .〉 satisfies the third

aforementioned property. By consider one branch in π at a

time, we can obtain a set of ΣA
π of such escort branch pairs de-

rived from π. Consider π1 = 〈1T, 2, 6F, 9, 10F, 13, 14F, 17〉
in the running example, reversing 1T or 10F leads to potential

DefUse pairs with existing branches in π1. As a result, we have

ΣA
π1
= {bT1 ⇒ bT10, b

T
10 ⇒ bT1 , b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }.

After the dynamic execution of π, WSπ tells what to

explore but not how to explore. We exploit symbolic com-

putation to compute the input/schedule vectors that lead to

executions that cover the escort branch pairs in WSπ. Let

ϕsm, ϕpo, and ϕim be the semantics constraint, partial-order

constraint, and interleaving matching constraint obtained from

predicative analysis on π. We need to remove the branch

terms from ϕsm because we need to change the constraint on

branch. Besides, we need to remove input values from ϕsm

in order to computing new inputs. Let ϕ′
sm be the revised

semantics constraint without branch terms and input values.

Given b
F/T
p ⇒ b

T/F
q ∈ WSπ , without loss of generality, we

Algorithm 3 AltBranchComputation (Program P , Trace π,

BranchPairSet Σ, InputScheduleSet Ω)

1: Let ΣA
π be the set of escort branch pairs if one of the

branch in π was reverted;

2: WSπ = ΣA
π

⋂
Σ;

3: Let B = {bT/F
1 , b

T/F
2 , . . . , b

T/F
k } be the branch con-

straints in ϕπ;

4: let ϕ′
sm be the semantics constraint of π without branch

terms;

5: ϕ′
π = ϕ′

sm ∧ ϕpo ∧ ϕim;

6: for each b
F/T
p ⇒ b

T/F
q ∈WSπ do

7: ϕbp = ϕ′
π ∧ b

F/T
p ∧∧q �=p

1≤q≤k(oq < op → b
T/F
q)

8: if ϕbp is satisfiable then
9: Obtain input �α and thread schedule �β from the

solution to ϕbp .

10: Ω = Ω ∪ {(�α, �β)};
11: end if
12: end for

assume it is b
F/T
p that has been negated in π. The encoding

that enforces a path that takes b
F/T
p is as the following:

ϕbp = ϕ′
sm ∧ ϕpo ∧ ϕim ∧ bF/T

p ∧
q �=p∧

1≤q≤k

(oq < op → bT/F
q),

(11)

where oq represents the order of bq and the arrow indicates

implication. If ϕbp is satisfiable, the formula ensures that bp
is the first negated branch in π and all the branches before

bp remains the same. Note that if there exists any branch bq
that is negated before bp, it is not guaranteed that bp can be

negated or even visited. The solution to Equation 11 contains

the assignments to program input �α and thread schedule �β.

An execution under the pair of vectors (�α, �β), leads to an

execution that executes b
F/T
p .

Back to the example in Figure 2, WSπ1 = ΣA
π1

⋂
Σ =

{bT1 ⇒ bT10, b
F
1 ⇒ bF10, b

F
10 ⇒ bF1 }. By projecting WSπ1

to branches, we can confirm there are two to-be-negated

branches b1(bT1 → bF1) and b10(bF10 → bT10). Then we build

their negation constraint formulas and verify them one by

one. For the negation bF10 → bT10 as shown in Equation 12,

ϕbp [b
F
10 → bT10] is unsatisfiable since b10 can’t be negated in π1

at all. Therefore, we can’t compute a feasible input/schedule

vector pair. For the negation bT1 → bF1 (omitting its equation),

one input/schedule vector pair (〈1, 2, 3〉, 〈1F 〉) is computed

from its satisfiable solution and leads to the new execution

that covers the branch pairs bF1 ⇒ bF10 and bF10 ⇒ bF1 .

ϕbp [b
F
10 → bT10] = ... ∧ xr

2 > 2 ∧ (o1 < o10 → a0 > 1) (12)

E. Overall Algorithm

Algorithm 4 gives the overall procedure that integrates the

four key components.

• ProgramBranchPairs performs static analysis on the

program P and returns the set of branch pairs Σ.

177

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 DefUseTesting (Program P)

1: Γ = Tested = ∅;
2: Σ = ProgramBranchPairs(P);

3: Ω = {〈random value〉, 〈〉};
4: while Σ �= ∅ ∧ Ω �= ∅ do
5: π=GuidedExecution(P,Σ,Ω,Γ, T ested);

6: if π = NULL then
7: Continue;

8: else
9: PredicativeAnalysis(π,Γ);

10: AlternateBranchComputation(P, π,Σ,Ω);

11: end if
12: end while
13: return Γ;

• GuideExecution executes P under an input/schedule

vector pair (�α, �β) removed from Ω. The branch pairs

covered by the executed trace π are removed from Σ,

and the DefUse pairs discovered in π are added to Γ.

• PredicativeAnalysis conducts symbolic analysis

on a given trace π. The computed DefUse pairs are added

to Γ.

• AlternateBranchComputation computes branch

pairs in P by negating one branch at a time in π.

After eliminating the branch pairs that do not need

consideration and that have not been considered before,

we compute the input/schedule vector pairs that include

both branch pairs in a path.

Table I gives the complete procedure for the computation

of DefUse pairs in the 3-threaded program shown in Figure 2.

• Step 0: Static analysis produces the set of escort branch

pairs Σ = {bF1 ⇒ bT10, b
T
1 ⇒ bT10, b

F
1 ⇒ bF10, b

F
10 ⇒

bF1 , b
T
1 ⇒ bF10, b

F
10 ⇒ bT1 }.

• Step 1: A random input and thread schedule (〈2, 2, 3〉, 〈〉)
leads to the execution of π1, which detects the four

DefUse pairs in Γex
π1

. A symbolic predicative analysis con-

firms that four other DefUse pairs in Γim
π1

exist in π1 once

its input and thread schedule are changed. The explicitly

detected and implicitly computed DefUse pairs, eight in

total, are recorded in Γ. The branch pairs covered by Γex
π1

and Γim
π1

are Σex
π1
= {bT1 ⇒ bF10} and Σim

π1
= {bF10 ⇒ bT1 },

respectively. We remove the items in Σex
π1

and Σim
π1

from

Σ, which gets Σ = {bF1 ⇒ bT10, b
T
1 ⇒ bT10, b

F
1 ⇒

bF10, b
F
10 ⇒ bF1 }. From π1, we may obtain a different

execution by reverting either bF1 or bT10, which means

ΣA
π1

= {bT1 ⇒ bT10, b
T
10 ⇒ bT1 , b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }.

The alternate branch computation component produces

one input/schedule vector in Ω that lead to the execution

that cover the branch pair in WSπ1 . Note that since

branch at Line 10 can’t be negated in π1, we only get

one input/schedule vector that reverses branch at Line 1.

• Step 2: The removed item (〈1, 2, 3〉, 〈1F 〉) from Ω causes

the execution of π2, which leads to the detection of

3 explicit DefUse pairs in Γex
π2

and 0 implicit DefUse

pairs Γim
π2

. The new detected items are added to Γ.

Since π2 covers bF1 ⇒ bT10, such item is removed from

Σ. If we revert the branches in π2, we may cover

ΣA
π2

= {bT1 ⇒ bT10, b
T
10 ⇒ bT1 , b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }.

Computing ΣA
π2

⋂
Σ, we get the to-be-covered branch

pairs WSπ2 = {bT1 ⇒ bT10, b
T
10 ⇒ bT1 , b

F
1 ⇒ bF10}. The

items lead to two new input/schedule vector pairs in Ω.

• Step 3: By following a removed input/schedule pair vec-

tor (〈1, 2, 3〉, 〈1F, 4, 6F, 9, 10F 〉) from Ω we obtain π3.

The dynamic execution and predicative analysis detect

4 new DefUse pairs that are added to Γ. The branch

pair covered by π3 is {bF1 ⇒ bF10, b
F
10 ⇒ bF1 }, which

is removed from Σ. By reverting a branch in π3, we

may cover {bT1 ⇒ bF10, b
F
10 ⇒ bT1 , b

F
1 ⇒ bT10, b

T
10 ⇒ bF1 }.

However, both have been covered before(WSπ3 = ∅).
Thus π3 does not produces any to-be-covered paths.

• Step 4: The last execution π4 =
〈1T, 2, 6F, 9, 10F, 13, 14F, 17〉 is determined by the

remaining one item (〈3, 2, 3〉, 〈1T 〉) in Ω. It equals π1

and has been already analyzed or tested. So we ignore it

and skip. However, since Ω are empty now, the algorithm

terminates. We consider the items in Σ as invalid branch

pairs, which can’t be covered in our exploration.

IV. EXPERIMENTS

We have implemented the proposed method in a software

tool STEM that is built upon LLVM [21], KLEE [5] and

Z3 [20]. It targets multithreaded C programs implemented

with the POSIX thread library. Before exploring DefUse pairs,

we first recognize shared access points with alias analysis.

Then we add a scheduler, a listener and an encoder into

KLEE. The scheduler is able to guide program executions

under a given thread interleaving specification. After collecting

executed instruction instances by the listener, the encoder

translates a trace into a logic formula. In total, we have added

7,500 lines of code to KLEE.

Our empirical study is conducted on eleven

benchmarks that are obtained from well-known application

suites SPLASH2 [22] (fft, radix, lu contiguous and

lu non contiguous) and PARSEC [23] (blackscholes), as well

as experimental objects in previous studies on bounded model

checker ESBMC [24] (including account, banking, twostage,
lazy, micro, reorder, stateful, token, arithmetic, queue, and
stack) and a trace simplification technique [25] (pfscan). In

total we have 22 buggy versions, each of which is inserted one

assertion failure. Some programs have two buggy versions,

such as fft and lu-c. These bugs are only triggered by special

thread scheduling and barely arise in most executions. We set

part of their inputs or shared variables as symbolic variables,

which may affect branch choosing. But not all programs

in SPLASH2 and PARSEC are suitable for our prototype

tool, because of non-linear computation or extremely long

execution traces.

Table II gives the experimental results of aforementioned

benchmarks by STEM in detail. In the table, Column LOC
gives the line of source code and Column #Inst shows the

178

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE COMPUTATION STEPS FOR THE MULTITHREADED PROGRAM SHOWN IN FIGURE 2, WHERE GE STANDS FOR GUIDED EXECUTION, AND PA

PREDICATIVE ANALYSIS, ABC ALTERNATE BRANCH COMPUTATION. ITEMS MARKED AS RED STAND FOR Δ OF DEFUSE PAIRS.

Step Component Set Content

1

Guided Execution

I : (〈2, 2, 3〉, 〈〉)→ π1 : {1T, 2, 6F, 9, 10F, 13, 14F, 17}(New)

Γex
π1
= {W x

0 → Rx
2 ,W

x
0 → Rx

10,W
z
2 → Rz

13}
Σex

π1
= {bT1 ⇒ bF10}

Σ = Σ− Σex
π1
= {bF1 ⇒ bT10, b

T
1 ⇒ bT10, b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 , b

F
10 ⇒ bT1 }

Predicative Analysis

Γim
π1

= {W x
13 → Rx

2 ,W
z
0 → Rz

13}
Σim

π1
= {bF10 ⇒ bT1 }

Σ = Σ− Σim
π1

= {bF1 ⇒ bT10, b
T
1 ⇒ bT10, b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }

ΔΓ = {W x
0 → Rx

2 ,W
x
0 → Rx

10,W
z
2 → Rz

13,W
x
13 → Rx

2 ,W
z
0 → Rz

13}

Alternate Branch Computation

ΣA
π1
= {bT1 ⇒ bT10, b

T
10 ⇒ bT1 , b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }

WSπ1 = ΣA
π1

⋂
Σ = {bT1 ⇒ bT10, b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }

Ω = {(〈1, 2, 3〉, 〈1F 〉)}

2

Guided Execution

I : (〈1, 2, 3〉, 〈1F 〉)→ π2 : {1F, 4, 5, 6F, 9, 10T, 11, 14F, 17}(New)

Γex
π2
= {W x

0 → Rx
4 ,W

z
4 → Rz

11,W
x
5 → Rx

10}
Σex

π2
= {bF1 ⇒ bT10}

Σ = Σ− Σex
π2
= {bT1 ⇒ bT10, b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }

Predicative Analysis

Γim
π2

= ∅
Σim

π2
= ∅

Σ = Σ− Σim
π2

= {bT1 ⇒ bT10, b
F
1 ⇒ bF10, b

F
10 ⇒ bF1 }

ΔΓ = {W x
0 → Rx

4 ,W
z
4 → Rz

11,W
x
5 → Rx

10}

Alternate Branch Computation

ΣA
π2
= {bT1 ⇒ bT10, b

T
10 ⇒ bT1 , b

F
1 ⇒ bF10, b

F
10 ⇒ bF1 }

WSπ2 = ΣA
π2

⋂
Σ = {bT1 ⇒ bT10, b

F
10 ⇒ bF1 , b

F
1 ⇒ bF10}

Ω = {(〈1, 2, 3〉, 〈1F, 4, 6F, 9, 10F 〉), (〈3, 2, 3〉, 〈1T 〉)}

3

Guided Execution

I : (〈1, 2, 3〉, 〈1F, 4, 6F, 9, 10F 〉)→ π3 : {1F, 4, 6F, 9, 10F,
5, 13, 14F, 17}(New)

Γex
π3
= {W x

0 → Rx
4 ,W

x
0 → Rx

10,W
z
4 → Rz

13}
Σex

π3
= {bF1 ⇒ bF10}

Σ = Σ− Σex
π3
= {bT1 ⇒ bT10, b

F
10 ⇒ bF1 }

Predicative Analysis

Γim
π3

= {W x
13 → Rx

4}
Σim

π3
= {bF10 ⇒ bF1 }

Σ = Σ− Σim
π3

= {bT1 ⇒ bT10}
ΔΓ = {W x

13 → Rx
4 ,W

z
4 → Rz

13}

Alternate Branch Computation

ΣA
π3
= {bT1 ⇒ bF10, b

F
10 ⇒ bT1 , b

F
1 ⇒ bT10, b

T
10 ⇒ bF1 }

WSπ3 = ΣN
π3

⋂
Σ = ∅

Ω = {(〈3, 2, 3〉, 〈1T 〉)}

4
Guided Execution

I : (〈3, 2, 3〉, 〈1T 〉)→ π4 : {1T, 2, 6F, 9, 10F, 13, 14F, 17}(Tested)

Σ = {bT1 ⇒ bT10}
Alternate Branch Computation Ω = ∅(Stoped)

179

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II
EXPERIMENTAL RESULTS

Program LOC #Inst #F #Tr #BP #DU #imDU #inDU solTime(s) Time(s) Mem(m) BT
account bug 50 338 187 1 0 8 3 4 0.06 0.10 20 •
arithmetic bug 84 1,410 2,900 2 0 16 3 12 0.35 0.38 17 •
banking bug 217 3,788 1,536 1 23 27 10 21 0.78 0.82 27 •
twostage 10 bug 114 518 4,388 1 0 7 6 0 0.22 0.24 14 •
twostage 3 bug 114 669 231 1 0 6 5 1 0.08 0.09 8 •
lazy bug 46 168 124 1 0 7 4 0 0.02 0.04 8 •
micro 5 bug 53 2,051 17,239 1 0 324 303 17 482.13 482.29 519 •
queue bug 153 3,436 2,489 3 10 27 3 18 0.35 0.40 19 ◦
recoder 20 bug 85 893 13,033 1 8 6 6 0 0.35 0.37 18 •
recoder 2 bug 85 146 136 1 5 6 3 0 0.03 0.05 20 •
stack bug 111 5,443 6,181 4 34 12 2 5 3.72 3.77 26 ◦
stateful bug 60 1,239 1,244 1 0 8 4 3 0.12 0.13 10 •
token ring bug 54 658 456 3 19 16 6 4 0.18 0.20 28 ◦
blackscholes bug 578 33,144 3,049 1 0 18 0 18 64.71 64.99 537 ×
lu-c bug1 1,386 29,575 8,274 2 604 65 3 136 1,585.60 1,586.10 1,675 •
lu-c bug2 1,386 46,440 6,804 2 530 63 5 98 1,082.34 1,082.93 1,662 •
fft bug1 1,465 42,201 13,096 2 395 110 3 257 2,363.99 2,366.63 3,289 •
fft bug2 1,466 121,896 11,296 2 321 116 13 200 1,750.44 1,753.27 2,914 •
radix bug1 1,534 80,583 39,608 4 1075 93 6 176 2,033.29 2,034.99 801 •
radix bug2 1,537 78,645 15,906 3 719 86 8 106 362.74 364.10 543 •
lu-nc bug1 1,155 129,449 20,623 1 499 63 10 88 5130.89 5,131.84 4,680 •
pfscan bug 904 110,143 9,386 4 17 35 12 14 8.79 10.12 233 •
Average 574 31,492 8,099 2 194 51 19 54 675.96 676.54 774 -

average number of instructions in an execution trace. Column

#F and #Tr list the number of encoding formulas and the

number of trace during exploration, respectively. Column #BP
shows the number of covered branch pairs. Column #DU,

#imDU and #inDU give the total number of explored DefUse

pairs, the number of implicit DefUse pairs and the number

of invalid potential DefUse pairs, respectively. Column Time
and Mem present the time usage and memory consumption,

respectively. In particular, Column solTime lists the SMT

solving time. Column BT gives the result of bug finding,

where ◦, • and × stand for the bugs triggered during guided

execution, the bugs detected during replaying the implicit

DefUse pairs, and the bugs that are missed, respectively.

As shown in Table II, on average about two traces are

explored under the guidance of alternate branch pairs. From

Column #imDU, we observe that implicit DefUse pairs just

account for a small percentage, about 10%, of the total DefUse

pairs. Note that we only consider the relatively large programs,

including fft, radix, lu-c, lu-nc, blackscholes, and pfscan. If

a program has many implicit DefUse pairs, it means that

there exists hidden or unobserved behavior between threads,

which makes programs more error-prone. Our experimental

data indicate that our benchmarks are well-written. On the

other hand, hard-to-find bugs are hidden in rarely executed

interleavings. Thus it is necessary to find the implicit DefUse

pairs.

Table II also shows that most time is spent on SMT solving.

This points out a direction of optimizing our method, such as

simplifying formulas. A potential DefUse pair is an implicit

one if it is satisfiable in symbolic analysis. Otherwise, it is

an invalid one that is included in Column #inDU. On average

the number of invalid DefUse pairs accounts for 59%(#in-

DU/(#imDU+#inDU)) of the total potential DU pairs. There-

fore, we can greatly optimize our method if we can recognize

infeasible potential DefUse pairs before symbolic analysis.

Except blackscholes, all of the bugs are detected during the

concrete execution. For programs queue bug, stack bug and

token ring bug, their bugs are triggered during executing an

input/schedule vector that explores a new branch. And the

remaining 18 bugs are triggered during replaying the explored

implicit DefUse testcases.

V. THREATS TO VALIDITY

There are still some challenges in our current work. For

example, the static pointer analysis may give imprecise result

of escort branch pairs. Without the runtime information, some

feasible branch pairs can be missed. Meanwhile, it is possible

that an invalid branch pair is considered but can never be

covered during the computation. In addition, SMT solvers has

limited capability in handling nonlinear expressions and large

formulas. To make this approach scalable we have to design

aggressive optimization heuristics for constraint simplifica-

tion. Despite implementation challenges, we believe DefUse

coverage is a better coverage criteria than path/interleaving

coverage.

VI. RELATED WORK

In this section, we discuss the most relevant work to ours,

including DefUse, symbolic execution, concurrency testing

and symbolic analysis.

180

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

Definition-Use. DefUse relations have been used for soft-

ware testing. Many works [26, 27] have focused on testing

DefUse relation to increase test coverage. Y. Shi et. al.

developed a tool to test and detect bugs in both concurrent

and sequential programs by using analyzing DefUse invari-

ants [11]. Their tool automatically extracts the invariants

from programs that are executed many times under some

fixed inputs. Su et. al. implemented CAUT to generate inputs

for statically extracted definition-uses [28]. CAUT explores

the path covering current DefUse with symbolic execution

and recognizes the infeasible DefUse using model checking.

However, it is only suitable for sequential programs.

Symbolic Execution. In recent years symbolic execution

has become an important technique for effectively testing

programs [1–6, 9, 29–33]. For example, KLEE, an popular

symbolic execution tool, is capable of automatically generating

testcases on complex and environmentally-intensive programs

and achieving high coverage [5]. V. Chipounov et al. presented

a platform called S2E, which can test programs at binary

level and scale to large systems using selective symbolic

execution and execution consistency model [29]. S. Bucur

et al. implemented the first cluster-based parallel symbolic

execution platform, cloud9, which symbolically execute pro-

gram on distributed nodes [30]. Cloud9 supports multithreaded

programs using POSIX model and provides standard code

both coverage interleaving guarantees. However, it enumerates

the thread interleavings that only consider context switch on

synchronization statements.

Meanwhile, there is a large body of work on mitigating path

explosion in symbolic execution, including the use of function

summaries [34], may-must abstraction [35], demand-driven

refinement [36], state matching [37], state merging [38], struc-

tural coverage [39], weakest precondition computation [33],

and dependence guide [40]. McMillan proposed ac method

called lazy abstraction with interpolants [41, 42], which has

been shown to be effective in model checking sequential

software. Jaffar et al. [43] used a similar method in the context

of constraint programming to compute resource-constrained

shortest paths and worst-case execution time. However, a direct

extension of such methods to multithreaded programs would

be inefficient since they lead to the naive exploration of all

thread interleavings. Some recent work [9, 31, 32] focused on

the symbolic execution of multithreaded programs, but they

are not scalable due to path/interleaving explosion.

Concurrency Testing. For testing concurrent bugs, the most

direct and scalable method is random testing which inserts

random delays into execution at certain memory access point

in order to exercise different interleavings [44, 45]. However,

due to the random nature of these techniques, they are not

able to reveal concurrency bugs occurring under specific

interleavings [46]. To explore a unique scheduling in each

run, Recent work [19, 47, 48] systematically test concurrent

programs via steering thread scheduler according to context

switch bound or shared access point relation. Much more

work focus on the detection of specific bugs, such as data

race [13–15], atomicity [16, 46, 49], and dead lock [50, 51].

The common shortage in above work is that only small part

of interleavings are investigated under a fixed input.

Symbolic Analysis. Because of recent significant advances

in SMT solver, more and more people begin to reduce various

analysis problems about multithreaded programs to constraint

solving. A. Farzan et. al. present ExceptioNULL, a constraint-

solving based tool to predict interleavings that are likely to

cause null-pointer dereferences [52]. CLAP replays execution

of multithreaded programs via solving a constraint model

which is converted from logged execution trace [53]. J. Huang

et. al. present an automated technique which finds schedule-

sensitive branches from real concurrent systems by deriving

constraints for each to-be-negated branch and solving these

with an SMT solver [54]. However, the approach mealy finds

alternate branches under a current trace. Our approach, instead,

explores alternate branches to analyze newly discovered traces.

VII. CONCLUSION

In this paper we presented a framework that conducts

systematic testing of DefUse data flow for multithreaded

programs. We have implemented a tool called STEM and

the initial evaluation show the benefit of data flow testing.

Compared with path/interleaving testing, the DefUse testing

not only is more scalable but also leads to better compre-

hension of concurrent programs. For future work, we plan to

design a query language so users can query data-flow related

properties. This also requires appropriate presentation format

as a deterministic replay is needed to show a trace include a

particular data-flow pattern.

VIII. ACKNOWLEDGEMENTS

This work was supported by National Key Research and
Development Program of China (2016YFB0800202), the
National Natural Science Foundation of China (91218301,
U1301254, 91418205, 61472318, 61428206, 61532015,
61632015), Fok Ying-Tong Education Foundation (151067),
Key Project of the National Research Program of China
(2013BAK09B01), Ministry of Education Innovation Research
Team (IRT13035), the Fundamental Research Funds for the
Central Universities and the National Science Foundation
(NSF) under grant DGE-1522883.

REFERENCES

[1] L. A. Clarke, “A program testing system,” in Proceedings of the
1976 Annual Conference, ser. ACM ’76, 1976, pp. 488–491.

[2] J. C. King, “Symbolic Execution and Program Testing,” Com-
mun. ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.

[3] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit
Testing Engine for C,” in ESEC/FSE, 2005, pp. 263–272.

[4] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
Automated Random Testing,” SIGPLAN Not., vol. 40, no. 6,
pp. 213–223, Jun. 2005.

[5] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” in OSDI, vol. 8, 2008, pp. 209–224.

[6] C. S. Păsăreanu and N. Rungta, “Symbolic PathFinder: Sym-
bolic Execution of Java Bytecode,” in ASE. New York, NY,
USA: ACM, 2010, pp. 179–180.

[7] C. S. Păsăreanu and W. Visser, “A survey of new trends in sym-
bolic execution for software testing and analysis,” International

181

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

journal on software tools for technology transfer, vol. 11, no. 4,
pp. 339–353, 2009.

[8] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser, “Symbolic Execution for Software
Testing in Practice: Preliminary Assessment,” in ICSE, 2011.

[9] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta, “Asser-
tion guided symbolic execution of multithreaded programs,” in
ESEC/FSE, 2015, pp. 854–865.

[10] S. Guo, M. Kusano, and C. Wang, “Conc-iSE: Incremental
Symbolic Execution of Concurrent Software,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2016, 2016, pp. 531–542.

[11] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng,
“Do I Use the Wrong Definition?: DeFuse: Definition-use
Invariants for Detecting Concurrency and Sequential Bugs,” in
OOPSLA, 2010, pp. 160–174.

[12] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes:
A Comprehensive Study on Real World Concurrency Bug
Characteristics,” in ASPLOS, 2008, pp. 329–339.

[13] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace:
Effective Sampling for Lightweight Data-race Detection,” SIG-
PLAN Not., vol. 44, no. 6, pp. 134–143, Jun. 2009.

[14] C. Flanagan and S. N. Freund, “FastTrack: Efficient and Precise
Dynamic Race Detection,” in PLDI, 2009, pp. 121–133.

[15] Y. Cai and L. Cao, “Effective and Precise Dynamic Detection of
Hidden Races for Java Programs,” in ESEC/FSE. New York,
NY, USA: ACM, 2015, pp. 450–461.

[16] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants,” in
ASPLOS, 2006, pp. 37–48.

[17] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller, “Auto-
mated Type-based Analysis of Data Races and Atomicity,” in
PPoPP, 2005, pp. 83–94.

[18] M. Xu, R. Bodı́k, and M. D. Hill, “A Serializability Violation
Detector for Shared-memory Server Programs,” in PLDI, 2005,
pp. 1–14.

[19] J. Yu and S. Narayanasamy, “A Case for an Interleaving
Constrained Shared-memory Multi-processor,” in ISCA, 2009,
pp. 325–336.

[20] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,”
in Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2008, pp. 337–340.

[21] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO. IEEE,
2004, pp. 75–86.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 Programs: Characterization and Methodolog-
ical Considerations,” in ISCA. ACM, 1995, pp. 24–36.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” in PACT, ser. PACT ’08. ACM, 2008, pp. 72–81.

[24] L. Cordeiro and B. Fischer, “Verifying multi-threaded software
using smt-based context-bounded model checking,” in ICSE.
ACM, 2011, pp. 331–340.

[25] N. Jalbert and K. Sen, “A trace simplification technique for
effective debugging of concurrent programs,” in FSE. ACM,
2010, pp. 57–66.

[26] C.-S. D. Yang, A. L. Souter, and L. L. Pollock, “All-du-path
Coverage for Parallel Programs,” in ISSTA. New York, NY,
USA: ACM, 1998, pp. 153–162.

[27] M. J. Harrold and B. A. Malloy, “Data flow testing of paral-
lelized code,” in Software Maintenance, 1992. Proceerdings.,

Conference on, Nov 1992, pp. 272–281.

[28] Su, Ting and Fu, Zhoulai and Pu, Geguang and He, Jifeng
and Su, Zhendong, “Combining symbolic execution and model
checking for data flow testing,” in ICSE, vol. 1. IEEE, 2015,
pp. 654–665.

[29] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E Plat-
form: Design, Implementation, and Applications,” ACM Trans.
Comput. Syst., vol. 30, no. 1, pp. 2:1–2:49, Feb. 2012.

[30] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel Sym-
bolic Execution for Automated Real-world Software Testing,”
in EuroSys, 2011, pp. 183–198.

[31] A. Farzan, A. Holzer, N. Razavi, and H. Veith, “Con2Colic
Testing,” in ESEC/FSE, 2013, pp. 37–47.

[32] T. Bergan, D. Grossman, and L. Ceze, “Symbolic Execution of
Multithreaded Programs from Arbitrary Program Contexts,” in
OOPSLA, 2014, pp. 491–506.

[33] Q. Yi, Z. Yang, S. Guo, C. Wang, J. Liu, and C. Zhao, “Post-
conditioned symbolic execution,” in 8th IEEE International
Conference on Software Testing, Verification and Validation,
ICST 2015, Graz, Austria, April 13-17, 2015, 2015, pp. 1–10.

[34] P. Godefroid, “Compositional Dynamic Test Generation,” in
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, ser. POPL
’07, 2007, pp. 47–54.

[35] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali,
“Compositional May-must Program Analysis: Unleashing the
Power of Alternation,” in Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’10, 2010, pp. 43–56.

[36] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in Pro-
ceedings of the 29th International Conference on Software
Engineering, ser. ICSE ’07, 2007, pp. 416–426.

[37] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek, “Test Input Genera-
tion for Java Containers Using State Matching,” in Proceedings
of the 2006 International Symposium on Software Testing and
Analysis, ser. ISSTA ’06, 2006, pp. 37–48.

[38] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient
State Merging in Symbolic Execution,” SIGPLAN Not., vol. 47,
no. 6, pp. 193–204, Jun. 2012.

[39] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux, “Guided
Test Generation for Coverage Criteria,” in Proceedings of the
2010 IEEE International Conference on Software Maintenance,
ser. ICSM ’10, 2010, pp. 1–10.

[40] H. Wang, T. Liu, X. Guan, C. Shen, Q. Zheng, and Z. Yang,
“Dependence guided symbolic execution,” IEEE Transactions
on Software Engineering, vol. PP, no. 99, pp. 1–1, 2016.

[41] K. L. McMillan, “Lazy Abstraction with Interpolants,” in Pro-
ceedings of the 18th International Conference on Computer
Aided Verification, ser. CAV’06, 2006, pp. 123–136.

[42] ——, “Lazy Annotation for Program Testing and Verification,”
in Proceedings of the 22Nd International Conference on Com-
puter Aided Verification, ser. CAV’10, 2010, pp. 104–118.

[43] D.-H. Chu and J. Jaffar, “A Complete Method for Symmetry
Reduction in Safety Verification,” in Proceedings of the 24th
International Conference on Computer Aided Verification, ser.
CAV’12, 2012, pp. 616–633.

[44] K. Sen, “Effective Random Testing of Concurrent Programs,”
in ASE, 2007, pp. 323–332.

[45] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
Randomized Scheduler with Probabilistic Guarantees of Finding
Bugs,” in ASPLOS, 2010, pp. 167–178.

[46] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity

182

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

Violation Bugs from Their Hiding Places,” in ASPLOS, 2009,
pp. 25–36.

[47] M. Musuvathi and S. Qadeer, “Iterative Context Bounding for
Systematic Testing of Multithreaded Programs,” in PLDI, 2007,
pp. 446–455.

[48] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A
Coverage-Driven Testing Tool for Multithreaded Programs,” in
OOPSLA. New York, NY, USA: ACM, 2012, pp. 485–502.

[49] M. Samak and M. K. Ramanathan, “Synthesizing Tests for
Detecting Atomicity Violations,” in ESEC/FSE, 2015, pp. 131–
142.

[50] Y. Cai and Z. Yang, “Radius aware probabilistic testing
of deadlocks with guarantees,” in Proceedings of the
31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September
3-7, 2016, 2016, pp. 356–367. [Online]. Available:

http://doi.acm.org/10.1145/2970276.2970307

[51] Y. Cai, S. Wu, and W. K. Chan, “ConLock: A Constraint-based
Approach to Dynamic Checking on Deadlocks in Multithreaded
Programs,” in ICSE. New York, NY, USA: ACM, 2014, pp.
491–502.

[52] A. Farzan, P. Madhusudan, N. Razavi, and F. Sorrentino,
“Predicting Null-pointer Dereferences in Concurrent Programs,”
in FSE, 2012, pp. 47:1–47:11.

[53] J. Huang, C. Zhang, and J. Dolby, “CLAP: Recording Local
Executions to Reproduce Concurrency Failures,” in PLDI, 2013,
pp. 141–152.

[54] J. Huang and L. Rauchwerger, “Finding Schedule-sensitive
Branches,” in ESEC/FSE. New York, NY, USA: ACM, 2015,
pp. 439–449.

183

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:54 UTC from IEEE Xplore. Restrictions apply.

