
Debugging Multithreaded Programs as if They Were
Sequential

Xiaodong Zhang∗, Zijiang Yang†, Qinghua Zheng∗, Yu Hao∗, Pei Liu∗, Lechen Yu∗, Ming Fan∗ and Ting Liu∗,
∗Ministry of Education Key Lab for Intelligent Networks and Network Security,

Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China

Email: {xdzhang,yhao,pliu,lcyu,mfan}@sei.xjtu.edu.cn, {qhzheng, tingliu}@mail.xjtu.edu.cn
†Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA,

Email: zijiang.yang@wmich.edu

Abstract—Debugging multithreaded software is challenging
because the basic assumption that underlies sequential software
debugging, i.e. the program behavior is deterministic under fixed
inputs, is no longer valid due to the nondeterminism brought
by thread scheduling. In this paper, we propose a proactive
debugging method to restore this basic assumption so that
programmers can debug multithreaded programs as if they were
sequential. Our approach is based on the synergistic integration
of a set of new symbolic analysis and dynamic analysis techniques.
In particular, symbolic analysis is used to investigate the program
behavior under multiple thread interleavings and then drive the
dynamic execution to new branches. Dynamic analysis is used
to execute these new branches and in turn guide the symbolic
analysis further. The net effect of applying this feedback loop is a
systematic and complete coverage of the program behavior under
a fixed test input. We have implemented the proposed method in
a software tool called Proactive-Debugger. Our experiments show
that Proactive-Debugger outperforms both ESBMC and Maple,
two state-of-the-art testing tools for detecting and reproducing
bugs in multithreaded programs.

I. INTRODUCTION

Multithreaded programming is a key technique to unleash
the full potential of present and future generations of parallel
computing systems based on the use of multi-core processors.
However, the intrinsic nondeterminism of parallel execution
can result in concurrency errors that are difficult to detect, re-
produce, and debug [1]. While most mainstream programming
languages today support concurrency, their debugging tools
were designed primarily for sequential software development.
Indeed, there is a lack of practical tools for handling the unique
challenges in debugging multithreaded programs.

The typical assumptions for sequential program debugging
is as the following. Given a program P and an test input I , a
correct execution of the program indicates that P is correct
under the input I . In other words, if one execution of P
does not reveal any error, P is deemed correct under I and
therefore a different test input I ′ will be chosen to continue
the debugging. On the other hand, if an execution of P under
I reveals an error, we expect to reproduce the error by merely
executing P under I again. Subsequently, the programmer
can locate the erroneous statements responsible for causing
the error, modifying them to fix the bug, and test the revised
program P ′ under the same input vector I .

Unfortunately, the basic assumption underlying sequential
software debugging is no longer valid for multithreaded pro-
grams. The reason is that, due to scheduling nondeterminism,

Thread 1:
foo(int a) {
1 x = a;
2 if (x > 0)
3 y = y + 1;
4 else
5 y = y - 1;
}

Thread 2:
bar(int b) {
6 y = b;
7 if (y > 0)
8 x = x + 1;
9 else
10 x = x - 1;
}

Fig. 1. Code snippet showing two concurrent threads, with two local variables
a, b and two shared variables x, y.

one execution of the program may be different from another
even under the same test input. Consider the example in
Figure 1, which has two concurrent threads executing the two
functions foo() and bar(), respectively. There are two local
variables a and b and two shared variables x and y. We assume
that the developer would like to test if it is possible for y to
be negative when the execution of the two threads terminates.
Under the input 〈a = 1, b = 0〉, execution π : 〈1, 2, 3, 6, 7, 10〉
leads to (y = 0) at the end, which satisfies the requirement of
(y ≥ 0). However, unlike in sequential software debugging,
the fact that the first execution of the program meets the re-
quirement does not mean that the program is correct under this
input, as there exists another execution π′ : 〈6, 7, 1, 10, 2, 5〉
that violates the aforementioned requirement (the value of y is
−1 at the end of this execution). Conversely, if π′ were to be
executed first, it would indeed show an error in the program,
but a replay of the program under the same test input – if it
were a free run – would not be able to guarantee that π′ is
reproduced.

The above example illustrates that debugging sequential
programs and debugging multithreaded programs are sig-
nificantly different. This because sequential programs and
multithreaded programs have a number of distinguishing fea-
tures [2], which result in the following three major technical
challenges: nondeterministic thread schedule, numerous thread
interleavings [1], and difficulty in execution replay [3].

In this paper, we propose an approach to restore the basic
assumption of sequential software debugging for multithreaded
programs so they can be debugged as if they were sequen-
tial programs. Toward this end, we develop a synergistic
debugging framework, which has three new components: a
symbolic analysis component, a branch scanning component,
and a guided execution component (for dynamic analysis). The
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Thread 1: Thread 2:
1 x1

w = a; 6 y2
w = b;

2 if(x1
r > 0); 7 if(y2

r > 0);
3 y1

w = y1
r + 1 10 x2

w = x2
r − 1

Fig. 2. The SSA form of the execution trace π1.

entire framework forms a synergistic loop, where the symbolic
analysis and the dynamic analysis reinforce either other to
guarantee the systematic and complete traversal of all program
behaviors for a given test input.

This paper makes the following contributions:
1. We propose a proactive debugging framework for mul-

tithreaded programs, which allows us to simultaneously ana-
lyze multiple interleavings of the same execution trace. The
resulting formula is suitable for constraint solving based on
Satisfiability Modulo Theories (SMT) [4].

2. We propose a scanning method for locating the not-yet-
explored branches of the multithreaded program, and then
computing new thread schedules to guide the subsequent
dynamic analysis of the program under the same input.

3. We implement the proposed methods in a software tool
and evaluate it on a number of multithreaded benchmarks.
Our empirical study shows that the new proactive debugging
approach outperforms both Maple [5] and ESBMC [6], the
two state-of-the-art tools for detecting/reproducing failing ex-
ecutions of a multithreaded program.

II. MOTIVATING EXAMPLE

In this section we use the program given in Figure 1
as a running example to go though the basic steps of our
approach. Given an test input I : 〈a = 1, b = 0〉, we would
like to check whether y can be negative at the end of any
execution under I . For a trace π1 = {1, 2, 3, 6, 7, 10} and
its all interleavings, y ≥ 0 always holds. But it fails in the
trace πerr = {6, 7, 1, 10, 2, 5}. Assuming that π1 is the first
execution trace obtained, we illustrate the subsequent steps
needed for discovering the violation in πerr.

We first encode π1 as a quantifier-free first-order logic
formula, denoted ϕπ1, which captures not only π1 but all
the other possible interleavings of the instructions in π1. To
obtain such a formula, we first convert π1 into the Static Single
Assignment (SSA) form shown in Figure 2, where for each
variable v, we use vir/v

i
w to denote the i-th read/write of v. In

the following, we present the three types of constraints that,
when combined together, symbolically encode all possible
interleavings of the execution trace in SSA form.
Program Semantics Constraint. This type of constraint spec-
ifies program semantics requirement. Since SSA form already
gives unique indices to shared variables, the translation from
program input and SSA trace to such constraint is straight-
forward. For instance, the following equation gives the pro-
gram semantics constraint for the trace shown in Figure 2,
where the first two terms encodes initial values of a and b.
a = 1 ∧ b = 1 ∧ x1

w = a ∧ x1
r > 0 ∧ y1w = y1r + 1 ∧

y2w = b ∧ ¬(y2r > 0) ∧ x2
w = x2

r − 1
Memory Order Constraint. The equation below gives the
memory order constraint of π1, where symbolic variable oi
represents the possible position of the statement at Line i in

a valid execution, and oi < oj means the statement at Line i
happens before the statement at Line j.
(o1 < o2 < o3) ∧ (o6 < o7 < o10)
We consider the sequential consistency model only in this
work, and therefore restrict the order of statement execution to
follow the order of program code. For now, we leave the order
between statements from different threads unspecified; that is,
without considering the subsequent constraints, the instruction
at Line 10 may actually be executed before the instruction
at Line 1. Of course, for most programs, the order of the
statements among different threads cannot be totally arbitrary.
We will discuss the encoding of synchronization primitives
in Section III-A, which eliminates the bogus interleavings. In
general, the memory order constraint specifies a partial order
(instead of a total order) manifested in a particular execution.
This is the reason why this encoding leads to predicative
analysis of multiple interleavings of the given execution trace.

Read-write order constraint. The data flow of thread local
variables is well defined and clearly indicated by the SSA
form. Under the sequential consistency model, a value read
by a thread-local variable is the most recently written value
to the same variable. Therefore, we only need to define the
matching relations between read and write operations for
shared variables. Consider x1

r at Line 2. It may read value
from either x1

w at Line 1 or x2
w at Line 10. If x1

r reads x1
w, the

execution of Line 10 must either occur after Line 2 or before
Line 1. Similarly, in order for x1

r to read x2
w, the execution of

Line 10 must occur between those of Line 1 and Line 2. The
read-write constraint regarding x1

r is given below:
{x1

r = x1
w ∧ o1 < o2 ∧ (o10 < o1 ∨ o10 > o2)} ∨

{x1
r = x2

w ∧ o10 < o2 ∧ (o1 < o10 ∨ o1 > o2)}
For every read of a shared variable, we need a constraint

similar to the equation above. In addition, we need to use read-
write constraint to specify, for correctness checking, which
version of the variable y has to be checked at the end of an
execution. Let the last read of y, i.e. the third read, be y3r . Its
corresponding value can be written by either Line 3 or Line
6, as specified below:
(y3r = y1w ∧ o3 > o6) ∨ (y3r = y2w ∧ o3 < o6)
The equation states that the final value of y is written at Line
3 if it happens after Line 6; otherwise the value is from Line
6. With such specification, the requirement that y must be zero
or positive can be written as (ρ = y3r ≥ 0). We need to give
distinct superscript to y because it is uncertain which access
of y in the program is the last one.

Finally, we construct a formula by combining together the
three types of constraints: program semantics constraint ϕsm,
memory order constraint ϕmo and read-write constraint ϕrw.
This leads to the encoding of all possible interleavings of the
given execution trace π1: ϕπ1 = ϕsm ∧ϕmo ∧ϕrw. To check
the satisfiability of ϕπ1

∧¬ρ, we can use an off-the-shelf SMT
solver. Since this symbolic formula is unsatisfiable, we can
conclude that none of π1’s interleavings leads to a violation
of the requirement.

However, we cannot conclude that the program is correct
under I yet, because not all possible paths of the program
have been considered. Specifically, the reason why ϕπ1 ∧ ¬ρ
dosen’t covers πerr is because both this trace contains new
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statements that have not yet been executed by π1. For πerr,
it is Line 5. Since the goal of our project is to examine all
possible program behaviors under the given input, we have to
include πerr in our analysis.

Consider the conditional statement b2 : x > 1 at Line 2,
where the true branch is executed in π1. If there exists an
interleaving that leads to the execution of the false branch
of b2, we will have a new base for symbolic analysis. Here,
the challenge is to decide whether such new path is feasible
and, if it is feasible, how to enforce its execution during the
subsequent dynamic analysis (i.e., make it show up when we
run the program). We will discuss the algorithm more formally
in Section III-B.

As for this example, we create a constraint ¬(x1
r > 0) ∧

(o7 < o2 → y2r ≤ 0), which mandates that x1
r must be less

than or equal to 0 in the new path. In addition, if the branch
at Line 7, i.e. b7, happens before b2, the outcome of b7 must
remain unchanged. This constraint ensures that b2 is the first
negated branch in a new path. Of course, we cannot simply add
this constraint to ϕπ1 because it contradicts the term (x1

r >
0) already in ϕπ1 . This requires us to remove the branch-
related constraints in the existing formula before new paths
can be discovered. Let the revised formula be ϕ′π1

. If it is
unsatisfiable, b2 cannot be the first negated branch in any paths.
Otherwise, its solution gives schedule to a to-be-explored path.
In our example, the new schedule is s : 〈6, 7, 1, 10, 2, 3〉.

After the negation of b2, the program state will be deviated
from what has already happened in π1. Therefore, a symbolic
analysis based on π1 gives random results after b2. However,
any instructions happening before b2 are still valid because
they still follow the same control flow as that in π1. As a
result, s′ : 〈6, 7, 1, 10, 2〉 is not only valid but also guarantees
a negation at b2. If we enforce a guided execution following
s′ we will obtain πerr : 〈6, 7, 1, 10, 2, 5〉 in which y ≥ 0
fails. The new trace will trigger further symbolic and dynamic
analysis.

The above example illustrates, in a nutshell, how our
approach works. Details will be covered in the subsequent
sections. Specifically, in the next section, we will give a more
formal presentation, including the encoding with synchroniza-
tion primitives and the issues with negating branches. We
will also explain in more detail the integration of symbolic
and dynamic analysis, whose combined efforts enumerate all
possible thread interleavings under a fixed test input.

III. DEBUGGING ALGORITHMS

Our approach integrates explicit executions with symbolic
analysis to systematically explore program behavior under
fixed inputs. Its pseudo-code, shown in Algorithm 1, consists
of three components: guided execution, symbolic analysis, and
branch scanning. We name our top algorithm ProactiveTesting
because it attempts to detect errors automatically, even though
by checking one test input it is not a general testing tool.

We maintain a set of to-be-explored schedules S, initially
with one item. The algorithm terminates when either S be-
comes empty, which indicates that the program is correct with
respect to property ρ under test input I , or a bug is found.
Guided execution enforces an execution to follow a predefined

schedule prefix s removed from S. An execution that goes
beyond s becomes random. Note that the initial schedule
prefix is an empty vector 〈〉, so the first path is a random
execution from the beginning. Symbolic analysis encodes a
particular execution trace to analyze different thread interleav-
ings with the same set of instruction. The encoding of a trace
is incapable of predicating the program behavior involving
different instructions. The purpose of branch scanning is to
compute particular schedule prefixes that lead to executions
with different branches.

Algorithm 1 ProactiveTesting(Prog P , Input I , Prop ρ)

1: ScheduleSet S = {〈〉};
2: TestedSet T = ∅;
3: while S 
= ∅ do
4: PartialSchedule s = S.remove() ;
5: π = GuidedExecution(P, I, s);
6: if π.abstract 
∈ T then
7: T = T ∪ {π.abstract};
8: ϕπ=SymbolicAnalysis(π, ρ);
9: BranchScanning(ϕπ, S);

10: end if
11: end while

We have to maintain the set of explored traces to prevent
redundancy. With the assumption of program termination, such
set is not needed for sequential program path exploration as a
depth-first search or breath-first search can systematically ex-
plore all the branches. This is not true for thread interleavings.
We will give detailed explanation in Section III-C.

A. Symbolic Analysis
Symbolic analysis transforms an execution trace π into a

quantifier free first order logic formula ϕπ = ϕmo∧ϕsm∧ϕrw,
where ϕmo, ϕsm, and ϕrw denote memory order constraint,
program semantics constraint, and read-write constraint, re-
spectively. Let the property constraint be ρ. If ϕπ ∧ ¬ρ is
satisfiable, its solution gives a schedule that our tool can follow
to replay the error. This addresses the issue of execution replay
for multithreaded programs in case of failure.

As stated in the section of related work, the encoding of
execution paths is not new. Our encoding differs from existing
work only in technical details rather than concept.

Memory Order Constraint (ϕmo). This constraint specifies
the potential ordering of the instructions in an execution trace
π. In this paper, we consider sequential consistence memory
model only. If instruction i happens before instruction j in π
and both belong to the same thread, we enforce oi < oj .

The inter-thread ordering is guarded by synchronization
primitives. In multithreaded programs, the most popular syn-
chronization operations are lock/unlock and wait/signal. Con-
sider two lock/unlock pairs on the same mutex. The following
constraint mandates that one pair must be executed either
before or after another:
ϕ
L[m]
mo =

∧

li/ui,lk/uk∈L[m]

o(ui) < o(lk) ∨ o(uk) < o(li).

L[m] denotes the set of lock/unlock pairs on mutex m, and
o(x) represents the order of synchronization operation x.

80

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:09:11 UTC from IEEE Xplore.  Restrictions apply. 



Given a condition variable cd, let WT be the set of wait
operations on cd, and SG the set of signal operations on cd.
The constraint for wait/signal is:

ϕ
W [cd]
mo =

∧

w∈WT

∨

s∈SG

(ow < os < ow′ ∧ mw
s =

1)
∧
ϕWT
SG

∧
ϕSG
WT ,

where ow′ denotes the next event of wait on cd immediately
after w in the same thread, ow < os < ow′ indicates that a
signal operation s must be executed between w and w′, and
mw

s = 1 flags that s is mapped to w. Equation 1 defines ϕWT
SG

and ϕSG
WT , in which ϕWT

SG enforces that each wait operation
w needs to map to at least one signal operation, and ϕSG

WT

restricts that each signal operation s signals at most one wait
operation.

ϕWT
SG =

∧

w∈WT

{{ ∑

s∈SG

mw
s } ≥ 1}

ϕSG
WT =

∧

s∈SG

{{ ∑

w∈WT

mw
s } ≤ 1} (1)

Constraints on other types of synchronization primitives
are modeled similarly. The conjunction of these intra- and
inter-thread constraints relaxes the total order observed in an
execution trace π.

Program Semantics Constraint (ϕsm). The constraint maps
executed individual instructions to corresponding formula. We
skip detailed presentation as it requires mapping rules for
complete LLVM syntax. Note that ϕsm enforces the same
control flow for all encoded thread interleavings as a derivation
leads to an execution with instructions unknown to π.

Read-Write Constraint (ϕrw). The program semantics con-
straint considers each thread individually, in which each ap-
pearance of a shared variable has a unique index. The purpose
of read-write constraint is to enumerate all possible matchings
between read and write instructions of shared variables. Con-
sider a shared variable v. Let R(v) and W (v) be the sets of
reads and writes on v, respectively. We use vr to denote the
read of v at instruction r, and vw the write of v at instruction
w. In addition, let or and ow be the order variables of r and
w. The read-write constraint on v is:

ϕv
rw =

∧

r∈R(v)

∨

w∈W (v)

{(vr = vw ∧ ow < or)∧
∧

x�=w∈W (v)

(ox < ow ∨ or < ox)} (2)

The constraint above describes that, if r matches w, then it
must be executed after w, and there are no other writes to v in
between. Let V be the set of shared variables, the read-write
constraint is: ϕrw =

∧

v∈V
ϕv
rw.

B. Branch Scanning

The solving of ϕπ is able to analyze the executions that
involve exactly the same set of instructions of π. That is, let
B = {b1, b2, . . . , bn} be the set of branch instances in π, ϕπ

allows only the permutations of π that execute the same set
of branch instances. Therefore, the unsatisfiability of ϕπ does
not imply correctness as there are feasible executions under I
not covered by ϕπ . In order to address this issue we search
for valid executions that follow different branches.

Algorithm 2 BranchScanning(Formula ϕπ , ScheduleSet S)

1: Let C = {c1, c2, . . . , cn} be the branch constraints in ϕπ;
2: ϕ′π = remove C from ϕπ .
3: for each ci in C do
4: ϕci

π = ϕ′π ∧ ¬ci ∧
∧

cj �=ci
(oj < oi → cj)

5: if ϕci
π is satisfiable then

6: extract the schedule si up to branch ci from the
solution to ϕci

π .
7: S = S ∪ {si};
8: end if
9: end for

Thread 1:
1 int x=a;
2 if (x>0)
3 y = y+1;

else
4 y = y-1;

Thread 2:
5 int y=b;
6 if (y>0)
7 x = x+1;

else
8 x = x-1;

Fig. 3. Code snippet with input (a = 1, b = 0) and shared variables x, y.

The pseudo-code for branch scanning is given in Algo-
rithm 2. At Line 2 we obtain ϕ′π by removing all the branch
constraints from ϕπ . Then for each ci ∈ C, we check whether
it can be the first branch in π that can be negated. That is, any
branches before ci must produce the same outcomes same as
in π. The potential path can be represented as
ϕci
π = ϕ′π ∧ ¬ci ∧

∧
cj �=ci

(oj < oi → cj),
where oi represents the order of ci. If ϕci

π is satisfiable, we
extract its solution that gives the schedule up to ci. Note that
the schedule after ci is invalid because the negation of ci leads
to unknown behavior that cannot be determined statically.
However, the schedule prefix si up to ci is valid and we save
it as a to-be-explored schedule in S.

C. Guided Execution

We have implemented a thread scheduler to enforce a
particular scheduling specified in a schedule vector s. There
are two pieces of critical information in item s[i]: the thread
id s[i].tid and the instruction s[i].ins. The scheduling vector
commands an execution to execute s[i].ins of thread s[i].tid at
i-th step. In most cases s specifies only a prefix up to a certain
step. After executing the last instruction in s the execution runs
to complete randomly.

In Section III-B we have explained that backtrack-based
systematic exploration such as DFS is not suitable for branch
scanning. As a result we have to maintain a set T of ex-
plored traces to avoid repeated exploration of the same traces.
Consider the code snippet in Figure 3 with test input (a =
1, b = 0) and shared variables x, y. Let the initial execution
be π1 = 〈1, 2, 3, 5, 6, 8〉. A search for alternative branches
confirms that the branch at Line 2 can be negated, which leads
to a schedule prefix 〈1, 5, 6, 8, 2〉. An execution following the
prefix results in the second execution π2 = 〈1, 5, 6, 8, 2, 4〉.
The branch instance at Line 2 in π2 can be negated as well,
with a schedule prefix of 〈1, 2〉. Following such schedule
prefix we may execute 〈1, 2, 3, 5, 6, 8〉, same as π1. Without
T Algorithm 1 may not terminate.
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There are two challenges to maintain the set of explored
traces. Firstly, the number of traces, even under a fixed
test input, can be exponential to the number of instruction
instances. Therefore recording all the explored traces can be
extremely expensive. Secondly, recording explicitly executed
traces is not sufficient. T has to include the traces implicitly
explored by SMT solvers. To address both issues, we abstract
an execution trace π to avoid recording complete traces and
at the same time cover all the implicit traces derived from
π. Let πi be a subsequence by projecting π onto thread ti.
We partition π into a set π = {πi|1 ≤ i ≤ N}, where
N is the number of threads. Let πB

i = 〈b1i b2i . . . bki 〉 be the
subsequence of branches in πi. The trace abstract of π is
defined as π.abstract = {πB

i |1 ≤ i ≤ N}. During guided
execution, we need to keep abstracts of only those traces that
are explicitly explored. This is sufficient because according to
our algorithm: (1) explicitly explored traces must be different
at some branches, and (2) traces with difference interleaving
but same branch instances are covered by the same SMT
solving procedure. A set T based on abstracts not only keeps
much shorter sequences of individual traces but also gives
exponential reduction in the number of traces.

IV. EXPERIMENTS

We have implemented the proposed method in a software
tool Proactive-Debugger built upon LLVM [7], KLEE [8] and
Z3 [4]. It targets multithreaded C programs implemented with
the POSIX thread library. Our empirical study is conducted
on eleven benchmarks that are obtained from well-known
application suites SPLASH2 [9] and PARSEC [10], as well
as experimental objects in previous studies on bounded model
checker ESBMC [6] and a trace simplification technique [11].
We have created buggy versions for the original programs,
which are inserted into assertions.

We compare Proactive-Debugger against two widely used
concurrent software testing tools ESBMC [6] and Maple [5]
in terms of bug detection capability. All three tools are capable
of automatically exploring different thread interleavings. For
a fair comparison we restrict them to consider the same test
inputs in our experiments. Under a given test input, Maple
keeps records of tested interleavings and actively seeks to
expose untested interleavings through delaying certain state-
ments to increase interleaving coverage. ESBMC, on the other
hand, is based on bounded model checking. It terminates after
they either find an error, or explores all possible interleavings
under the current bound of context switches among threads.
We add constraints on fixed inputs to reduce the search space
of ESBMC. All our experiments were conducted on a Linux
3.13.0 desktop with quad-core 3.2 GHz Intel CPU and 16-GB
RAM.

The experimental results are shown in Table I, where
Column Name lists the names of the programs under testing.
Column LOC and #T give the line of code and the number
of threads, respectively. We have to collect different types
of data due to different natures of the tools. For Proactive-
Debugger, Maple and ESBMC, whether the bugs are de-
tected is given in Columns R. Column Ram and time show
the memory consumption and time usage, respectively. For

Proactive-Debugger, Columns #I, #F and #SAP list the number
of executed instructions, the number of constraints and the
number of SAPs on a trace, respectively. A SAP is a shared
access point where shared variables are read or written. For
ESBMC, Columns CS=1 and CS=2 give the experimental
results when the bound of context switches is set to 1 and
2, respectively.

By running programs instrumented by PIN [12], Maple ob-
serves the pattern of inter-thread dependence through shared-
memory accesses and orchestrates the thread schedule to
execute untested interleavings with an active scheduler. Be-
cause it uses heuristics to diversify thread interleavings during
repeated executions, Maple does not have consistent behavior
for individual test cases. Therefore for each program we run
Maple 30 times to obtain its bug detection rate. Before each
run we delete the results from previous runs. The bug detection
rates range from 33% to 100%, with an average rate of 92%.
Note that we only report the running time for the cases
where bugs are detected. It takes much longer time when the
bugs are not detected. Maple consumes very little memory
— it is sufficient to reserve 100KB before testing for all the
experiments.

ESBMC fails to detect most of the bugs. When context
switch bound is set to 1, ESBMC detects the bug in ac-
count bug in 0.38 seconds but fails to detect any bugs in
other benchmarks if we set the loop bound below 10. That is
because the bugs cannot be triggered under the current bound
on context switches and loops. If we set the loop bound above
10, ESBMC fails to terminate due to memory limit. When
context switch bound is set to 2, ESBMC is able to detect
bugs in the four small benchmarks but cannot terminate for
fft, luc, lunc, and radix, as indicated by MO, due to tremendous
memory consumption even for a trivial loop bound below 10.

Proactive-Debugger detects the bugs in all the experiments.
Without considering the last benchmark it gains an average
speedup of 5.17X over Maple. In Maple, the overhead of
online profile and active scheduler is up to 100X [5]. Although
running programs on KLEE makes the executions much
slower, Proactive-Debugger conducts significantly less number
of executions with the help of symbolic analysis that implicitly
enumerates most of the thread interleavings. However, the ex-
periment on swarm bug shows that Proactive-Debugger may
have severe performance penalty if the underlying logic is not
suitable for SMT solving. In the case of swarm bug, Proactive-
Debugger terminates after 12074 seconds, which is above our
3600 seconds time limit, due to non-linear computations. Z3
has limited support for non-linear expressions at a very high
cost [4]. Nevertheless, Proactive-Debugger is able to detect the
bugs when it finally terminates. Proactive-Debugger consumes
more memory than that of Maple, but much less than that of
ESBMC. Indeed, Proactive-Debugger is a trade-off between
the two techniques on opposite ends of testing spectrum.

V. RELATED WORK

There is a large body of work on testing/debugging con-
current bugs, including random testing [13, 14], systematic
testing [1, 5, 15], and active testing [16–18].
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TABLE I
PROACTIVE-DEBUGGER VERSUS ESBMC AND MAPLE ON BUG DETECTION

Name LOC #T Proactive-Debugger Maple ESBMC
R #I #F #SAP Ram(M) time(s) R Ram(K) time(s) CS=1 CS=2

account bug[6] 54 4
√

55 49 2 4.5 0.016 97% 100 3.1 0.38 0.9
arith bug[6] 84 3

√
255 964 26 11 0.39 100% 100 5.7 × 2.5

queue bug[6] 153 3
√

417 3,144 23 10 0.32 73% 100 4.5 × 1.27
stack bug[6] 111 3

√
389 6,996 30 16 3.47 33% 100 2.9 × 1.25

fft bug1[9] 1466 3
√

6.7k 2,284 199 402 3.5 100% 100 69.1 × MO
fft bug2[9] 1466 3

√
6.7k 1,981 196 586 5.7 100% 100 48.8 × MO

luc bug1[9] 1386 3
√

4k 1,673 302 713 7.8 100% 100 38.4 × MO
luc bug2[9] 1386 3

√
8.1k 2,854 584 1,604 14.5 100% 100 14.9 × MO

lunc bug1[9] 1155 3
√

25.5k 7,225 1,021 778 10.4 97% 100 34.3 × MO
lunc bug2[9] 1155 3

√
25.6k 6,099 1,015 1,028 11.5 100% 100 13.1 × MO

radix bug1[9] 1537 3
√

6.5k 3,573 321 225 3.1 100% 100 33.4 × MO
radix bug2[9] 1537 3

√
6.5k 2,292 303 209 2.2 97% 100 14.1 × MO

pfscan bug[11] 985 3
√

5k 789 731 89 0.87 100% 100 14.7 × MO
blackscholes bug[10] 620 4

√
8.1k 1267 315 16 0.27 100% 100 7.3 × ×

swarm bug[11] 2249 5
√

15.2k 77158 802 2525 TO 100% 100 13.2 × MO
Avg. 1023 3.3 – 7.6k 7789 518 491 4.1 92% 100 21.2 – –

Random Testing. To exercise a more diverse set of thread
interleavings, random delays need to be inserted at global
memory access points to perturb their execution order [13,
14]. Although random testing based techniques are scalable,
they do not provide the systematic and complete coverage;
therefore, they often cannot reveal concurrency bugs whose
symptoms occur only in rare interleavings [19].
Systematic Testing. Systematic testing techniques guarantee
to visit one unique interleaving at a time, and reach a prede-
fined coverage goal if given sufficient time. Generally speak-
ing, these techniques fall into two categories: coverage-driven
systematic testing and stateless model checking. Coverage-
driven systematic testing techniques aim to reach a coverage
criteria such as synchronization coverage [15] and inter-thread
dependencies coverage [5]. Whereas stateless model checking
based techniques aim to exhaustively cover all possible thread
interleavings up to a fixed number of context switches [1].
Unfortunately, since the number of possible interleavings can
be enormous, these techniques often do not work well on
large programs and possibly miss corner bugs. In contrast,
our new method can reach a sweet spot within the general
framework of systematic testing by exploiting the benefits of
both symbolic analysis and dynamic analysis while avoiding
their shortcomings.
Active Testing. Active testing techniques aim at detecting
certain type of concurrency bugs including deadlock [16],
data-race [17], and atomicity violation [18]. For example,
Maiya [17] proposed a happens-before analysis based method
for detecting data-races in Android applications. Shacham [18]
proposed a testing method for detecting atomicity violations
in compositions of atomic operations of concurrent libraries.
Although our current prototype in Proactive-Debugger handles
assertion failures only, it is significantly more general than the
prior techniques because assertion can be used to capture a
wide range of concurrency bugs in practice.

VI. CONCLUSION

We have presented a proactive testing method aimed to
address the main challenges of testing and debugging mul-

tithreaded programs. Under a fixed input, the testing and
debugging of a multithreaded program is fully automated

and hidden behind the scene. Compared to state-of-the-art
techniques, our method shows its stronger abilitiy for detecting
and reproducing bugs in multithreaded programs.
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