
Tell You a Definite Answer: Whether Your
Data is Tainted During Thread Scheduling
Xiaodong Zhang , Zijiang Yang, Senior Member, IEEE, Qinghua Zheng,Member, IEEE,

Yu Hao, Pei Liu, and Ting Liu ,Member, IEEE

Abstract—With the advent of multicore processors, there is a great need to write parallel programs to take advantage of parallel

computing resources. However, due to the nondeterminism of parallel execution, the malware behaviors sensitive to thread scheduling

are extremely difficult to detect. Dynamic taint analysis is widely used in security problems. By serializing amultithreaded execution and

then propagating taint tags along the serialized schedule, existing dynamic taint analysis techniques lead to under-tainting with respect to

other possible interleavings under the same input. In this paper, we propose an approach called DSTAM that integrates symbolic analysis

and guided execution to systematically detect tainted instances on all possible executions under a given input. Symbolic analysis infers

alternative interleavings of an executed trace that cover new tainted instances, and computes thread schedules that guide future

executions. Guided execution explores new execution traces that drive future symbolic analysis.We have implemented a prototype as

part of an educational tool that teaches secure C programming, where accuracy is more critical than efficiency. To the best of our

knowledge, DSTAM is the first algorithm that addresses the challenge of taint analysis for multithreaded program under fixed inputs.

Index Terms—Taint analysis, multithreaded programs, symbolic analysis, encoding, guided execution

Ç

1 INTRODUCTION

DYNAMIC taint analysis (DTA for short) tracks informa-
tion flow between sources and sinks during runtime. It

has been shown to be effective in dealing with a wide range
of security problems such as data leak detection [1], software
attack prevention [2], [3], information flow control [4], [5],
and malware analysis [6], [7]. Because of its enormous appli-
cations, there has been considerable amount of work to
improve its efficiency and accuracy. Unfortunately, the exist-
ing DTA techniques, when applied on multithreaded pro-
grams, lead to severe under-tainting. This is due to the fact
that besides inputs, thread scheduling also affects the pro-
gram executions. Only analyzing one interleaving will miss
the report of tainted instances on other interleavings. As a
result, DTA is not able to conduct effective taint analysis on
multithreaded programs. That is, given amultithreaded pro-
gram and a fixed input vector, DTA is no longer able to
answer users’ queries such as whether a particular variable
instance is tainted under the input.

Fig. 1 gives an atomicity error [8], which is detailedly
introduced in the literature [9]. It allows an attacker to
silently trigger a buffer overflow in Moonlight, a Silverlight
browser plugin implementation of the Mono open-source .
NET framework. The FastCopy() method first checks that

the types of the destination element and the source element
are compatible (Line 3-5). Then, this method performs
memory copy if they are compatible (Line 8-9). However,
the type check and the copy are not implemented as one
atomic step so that an attacker can modify the source or
destination array after the type check. For example, the
attacker in another thread can modify the source array with
a media file. This file cannot get through the type check, but
it can lead to a buffer overflow with a crafted modification.
If the thread runs the statement at Line 6 after a type check
but before a copy action, then buffer overflow will be
triggered when the memcopy is performed. This kind of
attack is called concurrency attack [9]. Through carefully
crafted inputs, attackers can artificially control the timing
window within which a concurrency error may occur to
increase the chance of exploiting the error. When we lever-
age DTA to detect the attack, we set the crafted media file
as untrusted data, that is, taint source. From the code
snippet, we can know that if Line 6 happens before Line 4,
the type check is failed and FastCopy terminates; and if
Line 6 happens after Line 9, the untrusted data never be
propagated to memcopy. During the analysis, only if the
interleaving s ¼ f:::3� 4:::6:::8� 9:::g is encountered, the
attack can be detected. Otherwise, for any interleaving
except s, DTA cannot detect the attack and only gives an
under-tainting result.

From the example, we know that in order to determine
whether an instance is tainted under a given input, all
execution traces permissible under that input must be
examined. However, in current environment a user has no
control over the scheduling of threads. Furthermore, when
applying DTA repeatedly on a multithreaded program, the
same thread interleavings, with minor variations, tend to be
exercised since thread schedulers generally switch among

� X. Zhang, Q. Zheng, Y. Hao, P. Liu, and T. Liu are with theMinistry of Edu-
cationKey Lab for IntelligentNetworks andNetwork Security, Xi’an Jiaotong
University, Xi’an, Shaanxi 710000, China. E-mail: {xdzhang, yhao, pliu}
@sei.xjtu.edu.cn, {qhzheng, tingliu}@mail.xjtu.edu.cn.

� Z. Yang is with the Department of Computer Science, Western Michigan
University, Kalamazoo, MI 49008. E-mail: zijiang.yang@wmich.edu.

Manuscript received 26 Oct. 2017; revised 19 Aug. 2018; accepted 2 Sept.
2018. Date of publication 26 Sept. 2018; date of current version 17 Sept. 2020.
(Corresponding author: Ting Liu.)
Recommended for acceptance by C. Zhang.
Digital Object Identifier no. 10.1109/TSE.2018.2871666

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

0098-5589� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8380-1019
https://orcid.org/0000-0002-8380-1019
https://orcid.org/0000-0002-8380-1019
https://orcid.org/0000-0002-8380-1019
https://orcid.org/0000-0002-8380-1019
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
mailto:
mailto:
mailto:
mailto:

threads at the same program locations. The net effect of
these impediments is that only a few interleavings end
up being executed in practice. In the field, complex and
largely unpredictable interactions involving external
events and other unrelated processes will inevitably trig-
ger an execution sequence of the multithreaded program
that escaped detection during controlled monitoring.
Even if it were possible to control thread scheduling, it
would still be infeasible to explicitly test all interleavings.
The number of possible interleavings of a multithreaded
program with n threads each executing at most k steps
can be as large as ðnkÞ!=ðk!Þn � ðn!Þk, a complexity that is
exponential in both n and k [10].

In order to address the challenges of taint analysis for
multithreaded programs, we develop a synergistic taint
analysis framework that integrates symbolic analysis and
guided execution to guarantee a systematic and complete
traversal of all program behaviors for a test input. The
current prototype is part of an educational tool that teaches
programmers secure C programming. The most common
query raised by students is whether a particular variable
instance is tainted under a given input, and if so, an
evidence on how the variable becomes tainted. Although
there exist a large number of taint analysis tools, such as
Dytan [11], TaintCheck [2], BuzzFuzz [12], and BitBlaze [13],
none is able to give a definite answer to the query as they do
not consider thread scheduling.

There has been very little research on dynamic taint
analysis ofmultithreaded programs. To the best of our knowl-
edge, DTAM [14] is the only research that targets this prob-
lem. However, the three approaches proposed by DTAM
cause under-tainting, over-tainting,1 or both. This is not
acceptable in applications where precise and definite
answers are desired. For example, in our educational
software students miss the opportunity to discover the
security issues in their programs when under-tainting
happens, and they may get confused or misled when
over-tainting happens. Besides imprecision, DTAM can-
not provide an evidence interleaving when a scheduling-
sensitive taint instance is judged. Without a propagation
evidence, programmers still know nothing about how the
instance is tainted. With these considerations, our algo-
rithm aims to accurately report tainted instances under a
fixed input, without false negatives and false positives.
Our algorithm not only can give a definite answer
whether a variable instance is tainted during thread
scheduling, but also provide a propagation evidence for
each tainted instance to assist in detecting attack. In sum-
mary, this paper makes the following major contributions:

� Formultithreaded program, a single input can lead to
exponential number of different executions. Existing
DTA techniques can only conduct taint analysis on a
given execution but not on a given input. This does
not meet the expectations of taint analysis for most
applications. To the best of our knowledge, We are
the first to address the challenge of precise taint anal-
ysis for multithreaded program under a given input.

� Under the assumption of an ideal SMT solver, our
algorithm is sound and complete in the sense that it
can detect the tainted instances under a given input
without false positives and false negatives. This is
achieved by synergistic integration of symbolic
analysis and guided execution. Soundness and com-
pleteness are not achievable if there are software arti-
facts, such as nonlinear expressions, that cause
unknown SMT solving result.

� We implement the proposed algorithm in a proto-
type tool, which generates a propagation evidence
for each detected tainted instance. Our evaluation
confirms that our algorithm detects more tainted
instances than existing approaches that monitor and
analyze a single execution.

The remainder of this paper is organized as follows.
Section 2 uses an example to illustrate why existing DTA
techniques are not sufficient and how our approach works.
Section 3 gives a formal presentation of our algorithms. After
reporting experimental results in Sections 4 and 5 reviews
the relatedwork. Finally, Section 6 concludes the paper.

2 INSUFFICIENCY OF EXISTING APPROACH AND

SKETCH OF OUR APPROACH

In this section we first use a more complex example to
illustrate the typical procedure of DTA and explain why it
is insufficient to handle multithreaded programs. Next we
give a sketch of our approach on the same example.

2.1 DTA Not Sufficient
Fig. 2 shows a multithreaded program P , where the main
thread T0 creates two threads T1 and T2. There are two
shared variables x (accessed by all threads) and z (accessed
by T1 and T2). With argv½1� being the only (untrusted) input,
we aim to detect all the tainted variable instances under a
fixed input argv½1� ¼ 1. Let an execution of P be p1 ¼
h1; 2; 3; 6; 7; 8F; 4; 10; 5; 11i, where T=F after a line number
denotes the true/false branch. The trace is depicted as the
first column in Fig. 3. The blue, green and red boxes repre-
sent the instruction instances of Threads 0, 1 and 2, respec-
tively. Within each node we give the line numbers and
corresponding statements. For ease of understanding we

Fig. 1. A concurrency attack resulting from an atomicity error in Moonlight.

1. An instance that never can be tainted is deemed tainted.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 917

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

illustrate the example at the source code level and assume
each statement is atomic, although our implementation is at
the LLVM bytecode level. DTA monitors the execution and
propagates the taint information from the assignment at
Line 1. In this example, an assigned variable is tainted if any
of the variables on the right hand side of the assignment is
tainted. A propagation policy may or may not consider
implicit flows caused by control dependency. We choose
not to consider implicit flows in this paper. The research on
this topic [11], [15], [16], [17] is orthogonal to ours and can
be adopted. As shown in Fig. 3, y@L2 becomes tainted
because a on the right-hand side is tainted; m@L6 is tainted
because it receives the value of the tainted parameter y@L3,
which in turn taints x@L6; x@L5 becomes untainted due to
constant assignment. Note that we use variable name and
line number to uniquely identify an instance in an execu-
tion, although in general this is insufficient. All the tainted
instances reported by DTA are marked red in Fig. 3.

The result obtained by applying DTA is under-tainted.
Due to nondeterministic thread scheduling there are

multiple valid executions under the same input. As shown by
the second column in Fig. 3, another execution is p2 ¼
h1; 2; 3; 6; 7; 8F; 4; 10; 11; 5i, which inverts the last two instruc-
tions in p1. Since Line 11 is executed before the constant
assignment at Line 5 inp2, z@L11 is tainted inp2 but not inp1.
The last column in Fig. 3 gives a third execution p3 ¼
h1; 2; 3; 6; 7; 4; 5; 8T; 9; 10; 11i. Unlike p2 that reorders the
instructions in p1, different thread scheduling in p3 causes the
execution of a different branch at Line 8. The different branch
leads to the execution of Line 9 that does not appear in p1 or
p2. It turns out w@L9 is tainted in p3. The traces p2 and p3

illustrate the two reasons for the under-tainting: DTA does
not consider the reordering of instructions in a trace; and
DTA does not consider the executions of different branches
caused by alternative thread schedulings.

Fig. 4 depicts the insufficiency of applying DTA on
multithreaded programs. By monitoring a particular execu-
tion under a given input, existing DTA techniques have two
severe shortcomings. When a variable x is declared not
tainted, a future execution under the same input but with
different thread schedule may or may not contradict the
current result. When a variable x is declared tainted, it is
true. However, propagation evidence for such tainting
cannot be easily reproduced. Unlike in sequential programs
where a re-execution under the same input is sufficient,
deterministically replaying an execution is a major chal-
lenge for multithreaded programs [18], [19].

2.2 How Our Approach Works
We use the program given in Fig. 2 as a running example to
illustrate the basic steps of our approach. As shown by the
first column in Fig. 3, existing DTA tools monitor the execu-
tion of p1 and report the set of tainted instances as shown as

G ¼ fa@L1; y@L2;m@L3; x@L6; z@L7; n@L4; x@L10g: (1)

Starting from p1, we explain how our approach automati-
cally detects the scheduling-sensitive tainted instances
z@L11 in p2 and w@L9 in p3.

Fig. 5 gives the trace of p1 in Static Single Assignment
(SSA) form, where each variable instance gets a unique sub-
script label. In addition, for each shared variable v, we use
superscripts r and w to denote the read and write of v. In
addition, we add explicit assignments for parameter pass-
ing at Lines p2 and p3, which are considered as the first

Fig. 2. A multithreaded program with shared variables x; z:

Fig. 3. Three valid executions of the program in Fig. 2 under argv[1]=1.

Fig. 4. Existing DTA techniques fail multithreaded programs.

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

statements in Threads 2 and 3, respectively. In the follow-
ing, we present the four types of constraints that, when
combined together, symbolically encode all valid ordering
of an execution trace.

Partial Order Constraint. The core of the encoding is to
relax the total order of p1 so that other interleavings can be
considered. Equation (2) gives the partial order constraint of
p1, where symbolic variable oi represents the possible posi-
tion of the statement at Line i in a valid execution,
and oi < oj means Line i happens before Line j. We only
consider the sequential consistency model in this work,
therefore the ordering within individual threads cannot be
changed. In addition, Line 3 happens before Line p2
(o3 < op2) because the statement at Line 3 creates Thread 1.
Similarly, o4 < op3. On the other hand, the partial order con-
straint does not specify the relative order of most statements
from different threads. For example, Line 10 can happen
before Line 6 even the opposite happens in p1. Of course, for
most programs, the order of the statements among different
threads cannot be totally arbitrary. We will discuss the
encoding of synchronization primitives in Section 3.

ðo1 < o2 < o3 < o4 < o5Þ ^ ðop2 < o6 < o7 < o8Þ
^ ðop3 < o10 < o11Þ ^ o3 < op2 ^ o4 < op3:

(2)

Program Semantics Constraint. This type of constraint
specifies program semantics requirement. Since SSA form
already gives unique indices to shared variables, the trans-
lation from the trace to such constraint is straight-forward.
Equation (3) gives the program semantics constraint for the
trace shown in Fig. 5.

a1 ¼ 1 ^ y1 ¼ a1 þ 1 ^ xw
6 ¼ 3

m1 ¼ y1 ^ xw
1 ¼ m1 ^ zw1 ¼ xr

2 ^ :ðxr
3 > zr2Þ

n1 ¼ y1 ^ xw
4 ¼ n1 þ 1 ^ zw2 ¼ xr

5 � xr
5:

(3)

Taint Propagation Constraint. For a variable instance vi, we
associate with it a symbolic Boolean variable vi:tag to propa-
gate taint. Fig. 6 gives the encoding of taint propagation,
which indicates the variable instance on the left-hand side
of an assignment is tainted if one of the operands on the
right-hand side is tainted. Of course, in our implementation
we need to consider the semantics of an expression. For
example, a Boolean and with false or a Boolean or with
true untaints the assigned variable.

Interleaving Matching Constraint. While a trace in SSA
form clearly indicates the data flow of thread local variables,
it does not specify the correlation between the reads and
writes of a shared variable. For example, xr2@L7 that may
read from either xw

1 @L6, xw
6 @L5 or xw

4 @L10. In order for xr2
to read from xw

1 , the execution of Line 5 and Line 10 must
either occur before Line 6 or after Line 7. In this case, the
value of xr

2 is the same as xw1 and the taint propagates from
xw
1 to xr

2. Similarly, if xr
2 reads xw

6 , the execution of Line 6
and Line 10 must either occur before Line 5 or after Line 7;
if xr

2 reads x
w
4 , the execution of Line 5 and Line 6 must either

occur before Line 10 or after Line 7. The interleaving

matching constraint regarding xr
2 is given in Equation (4).

The sub-formulas o6 > o7 in Row 4 and 6 is obviously infea-
sible, and will be ignored during encoding. For every read
of a shared variable, we need a similar constraint.

fxr
2 ¼ xw1 ^ xr2:tag ¼ xw

1 :tag ^ o6 < o7
^ ðo5 < o6 _ o5 > o7Þ ^ ðo10 < o6 _ o10 > o7Þg

W
xr
2 ¼ xw

6 ^ xr
2:tag ¼ xw

6 :tag ^ o5 < o7
^ fðo10 < o5 _ o10 > o7Þ ^ ðo6 < o5 _ o6 > o7Þg

W
fxr

2 ¼ xw4 ^ xr2:tag ¼ xw
4 :tag ^ o10 < o7

^ ðo5 < o10 _ o5 > o7Þ ^ ðo6 < o10 _ o6 > o7Þg:

(4)

Finally, we combine the four types of constraints that
consists of partial order constraint ’po, program semantics
constraint ’sm, taint propagation constraint ’tp, and
interleaving matching constraint ’im. The formula (5)

’p1
¼ ’po ^ ’sm ^ ’tp ^ ’im (5)

encodes all valid reordering of the instructions in p1. In
order to check if a variable instance, such as zw2 , is tainted,
we can leverage an off-the-shelf SMT solver to check the
satisfiability of ’p1

^ zw2 :tag. In our example, the formula is
satisfiable, which indicates that zw2 can be tainted even
though it is not in p1. A replay based on the solution to
’p1 ^ zw2 :tagmay give p2 as an evidence of tainting.

Unfortunately ’p1
cannot be used to check whether

w@L9 is tainted because Line 9 does not even appear in p1.
Consider the conditional statement at L8, where the false
branch x � z is executed in p1. If there exists a different
thread schedule that leads to the execution of the true
branch, we will have a new base for symbolic analysis.
Here, the challenge is to decide whether such a new path is
feasible and, if it is feasible, how to enforce its execution
during the subsequent guided execution (i.e., make it show
up when we run the program). We will discuss the algo-
rithm more formally in Section 3. As for this example, we
replace the term :ðx3

r > z2rÞ with ðx3r > z2rÞ to mandate that
x > z happens in a valid path. Hereon, we do not consider
the orderings between branch statements since there is only
one branch in the example.

Let the revised formula be ’0
p1

as shown in as

’0p1 ¼ ’p1
jREMOVEð:x3

r > z2rÞ ^ x3
r > z2r : (6)

If it is unsatisfiable, the branch at Line 8 cannot be negated
branch in any execution. Otherwise, its solution gives a
schedule to a to-be-explored path. In our example, the new
schedule is s : h1; 2; 3; 6; 7; 4; 5; 8T; 10; 11; 4; 5i.

Fig. 6. Taint propagation during the execution of p1.

Fig. 5. The SSA form of the execution trace p1.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 919

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

Once a new schedule is obtained, a concrete execution
has to be performed under the guidance of thread schedule
s. The reason that symbolic analysis alone is not sufficient is
because the thread schedules generated by symbolic analy-
sis are only partially valid. The schedule in s is not correct
after 8T because L9 must be executed. Since L9 is not con-
sidered by ’0

p1
, the symbolic analysis gives a random solu-

tion after L8 in s. However, the prefix s0 ¼ h1; 2; 3; 6; 7; 4; 5;
8T; i is not only valid but also guarantees the execution of
true branch at L8 . If we enforce a guided execution follow-
ing s0 we obtain p3 : h1; 2; 3; 6; 7; 4; 5; 8T; 9; 10; 11i. The new
trace will trigger further symbolic analysis. That is, we will
re-encode a new constraint ’p3 for execution p3 since ’p1

is
invalid for p3 anymore.

The above example illustrates, in a nutshell, how our
approach works. Fig. 7 depicts our synergistic taint analysis
framework that analyzes and explores program executions
instead of just observing an execution as DTA does. Our
tool includes a Trace Enlargement component (for sym-
bolic analysis), an Alternative Path Search component
(for symbolic analysis), and a New-Trace Exploration

component (for guided execution). The entire framework
forms a synergistic loop, where symbolic analysis and
guided execution reinforce each other, to guarantee the sys-
tematic and complete traversal of all program behaviors for
a given test input.

Specifically, in the Trace Enlargement component,
we capture valid partial order of a given execution trace
using a quantifier-free first-order logic (FOL) formula and
conduct predictive symbolic analysis to infer new pro-
gram behaviors. In the Alternative Path Search

component, we detect the branch sequences that are not
yet visited by the previous executions, and compute a
thread scheduling that enables the execution with new
branches. In the New-Trace Exploration component,
we perform guided execution, which enforces the newly
computed thread schedules in executing the program.
Such execution, in turn, leads to new execution traces to
be analyzed by the symbolic analysis. The loop terminates
when no new distinctive program path is found.

3 ALGORITHMS FOR TAINT ANALYSIS OF

MULTITHREADED PROGRAMS

In this section, we give a more formal presentation, including
the encoding with synchronization primitives and the issues
with negating branches. We will also explain in more detail
the integration of symbolic analysis and guided execution,
whose combined efforts enumerate all possible thread inter-
leavings under a fixed test input. Our approach integrates
explicit executions with symbolic analysis to systematically
explore program behavior under fixed inputs. Its pseudo-
code, shown in Algorithm 1, consists of four components:
New-TraceExploration,PotentialTaintDetection,
Trace Enlargement, and AlternativePathSearch.

Algorithm 1. DSTAM(Program P , Input I)

1: ScheduleSet S ¼ fhig;
2: TaintedSet G ¼ ;;
3: TestedSet P ¼ ;;
4: while S 6¼ ; do
5: p = NewTraceExploration(P; I, S.remove(), G);
6: if p:abstract 62 P then
7: P.add(p:abstract);
8: PotentialTaintSet �p =DetectTaint(p;G);
9: ’p ¼ TraceEnlargement(p;G;�p);
10: AltPathSearch(’p; S);
11: end if
12: end while

We maintain a set of to-be-explored schedules S, ini-
tially with one item (an empty vector). The algorithm ter-
minates when S becomes empty, which indicates that all
possible behaviors under the fixed input I have been
explored. New-Trace Exploration enforces an execu-
tion to follow a predefined thread schedule prefix s
removed from S. An execution that goes beyond s
becomes random. Note that the initial schedule prefix is
an empty vector hi, so the first trace is a random execu-
tion from the beginning. Each New-Trace Exploration

produces a recorded trace.
We say a trace is explicitly explored if it is produced by

New-Trace Exploration, and is implicitly explored if it is
considered by Trace Enlargement. Since a trace p pro-
duced by New-Trace Exploration may have been
implicitly explored, we conduct further analysis only if p is
not in a set P that contains all the explicitly and implicitly
explored paths. In Section 3.4 we explain why and how to
maintain P.

We analyze a trace p in two steps. The first step conducts
an offline analysis of p and records the tainted instances in
G according to standard taint policies. In addition, it collects
the set of instances �p in p that can be potentially tainted.
Trace Enlargement encodes p and confirms if any
instance in �p but not in G can actually be tainted. The
encoding of a trace is incapable of predicating the program
behavior involving different set of instruction instances.
The purpose of Alternative Path Search component is
to compute thread schedules that lead to executions with a
branch sequence different from previously explored paths.

3.1 New-Trace Exploration
We have implemented a thread scheduler to enforce New-

Trace Exploration. There are two pieces of critical

Fig. 7. Dynamic and symbolic taint analysis for multithreaded programs
(DSTAM).

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

information in a schedule item s½i�: the thread id s½i�:tid and
the instruction s½i�:ins, which demands an execution to exe-
cute s½i�:ins of thread s½i�:tid at ith step. The thread scheduling
is random when the execution is beyond schedule s. Each
thread follow the control flowuntil the end of execution.

We have to maintain a set P of explored traces to avoid
repeated exploration of the same traces. Consider the code
snippet in Fig. 8 with test input (a ¼ 1; b ¼ 0) and shared var-
iables x; y. Let the initial execution be p1 ¼ h1; 2T; 3; 5; 6F; 8i.
A search for alternative branches confirms that the branch at
Line 2 can be negated, which leads to a schedule prefix
h1; 5; 6F; 8; 2F i. An execution following the prefix results in
the second execution p2 ¼ h1; 5; 6F; 8; 2F; 4i. The branch at
Line 2 in p2 can be negated as well, with a schedule prefix of
h1; 2T i. Following such schedule prefix we may execute
h1; 2T; 3; 5; 6F; 8i, same as p1. Without P Algorithm 1 may
not terminate.

There are two challenges to maintain the set of explored
traces. First, the number of traces, even under a fixed test
input, can be exponential to the number of instruction ins-
tances. Therefore recording all the explored traces can be
extremely expensive. Second, recording only explicitly
executed traces is not sufficient. P has to include the traces
implicitly explored by SMT solvers as well. To address both
issues, we abstract an execution trace p to avoid recording
complete traces and at the same time cover all the implicit
traces derived from p. Let pt be a subsequence by projecting p
onto thread t. We partition p into a set p ¼ fptj1 � t � Ng,
whereN is the number of threads. Let pt

B ¼ hbt1bt2 . . . btki be the
subsequence of branches in pt. The trace abstract of p is
defined as p:abstract ¼ fpt

Bj1 � t � Ng. During guided exe-
cution, we need to keep abstracts of only those traces that are
explicitly explored. This is sufficient because according to our
algorithm: (1) explicitly explored traces must be different at
some branches, and (2) traces with different interleaving but
the same branch instances are covered by the same SMT solv-
ing procedure. A set P based on abstracts not only keeps
much shorter sequences of individual traces but also gives
exponential reduction in the number of traces.

3.2 Detection of Potentially-Tainted Set
There are two main steps in traditional sequential dynamic
taint analysis: (1) tagging, i.e., identifying data from exter-
nal inputs and marking them as tainted, and (2) propagat-
ing the taint tag along the data flow (some taint policies
consider control flow as well) through the program. Given
a trace p obtained from a guided execution, we apply the
traditional approach to compute a set of tainted instances
G. This is achieved by serializing p and then propagat-
ing taint tags along the serialized schedule. As shown in
Section 2.1, predictive symbolic analysis can find more
tainted instances in p by determining if ’p ^ vi:tag is satisfi-
able for each candidate instance vi. Since SMT solving is
computationally expensive, we need to carefully compute
a set of candidates to avoid unnecessary computation. We
call this set as potentially tainted set �p. In order to

compute �p, each thread maintains its own taint map for
shared objects and performs thread modular taint propaga-
tion. When a thread performs a shared read or passes a
parameter to another thread, it creates a pseudo taint tag
[14] and propagates it as if the shared read was treated as
an external input. During offline analysis, this pseudo taint
tag will be replaced by real taint tags.

We use an example to illustrate the computation of the
potentially tainted set. Consider the execution trace p1 given
in Fig. 6. As shown in Fig. 9, we associate a pseudo taint tag
pt with m@Lp2; z@L7; n@Lp3 and z@L11 because of shared
variable read or parameter passing. The pseudo taint tags are
propagated in each thread separately. During offline analysis,
once we replace pseudo taint tags with true, we get �p1 ¼fa@L1; y@L2;m@Lp2; x@L6; z@L7; n@Lp3; x@L10; z@L11g.
The actual taint set for serialized p1 is Gp1 ¼ fa@L1;
y@L2;m@Lp2; x@L6; z@L7; n@Lp3; x@L10g. In this case
there is only one instance, �p1 � Gp1 ¼ fz@L11g that needs
to be considered in Trace Enlargement component for p1.

3.3 Trace Enlargement
Trace Enlargement first transforms an execution trace p
into a quantifier free first order logic formula

’p ¼ ’po ^ ’sm ^ ’tp ^ ’im; (7)

where ’po;’sm, ’tp and ’im denote the partial order
constraint, program semantics constraint, taint propagation
constraint, and interleaving matching constraint, respec-
tively. For each variable instance vi that is potentially
tainted but not already tainted, i.e., in the set of �p � G, we
check if ’p ^ vi:tag is satisfiable. If so, its solution confirms
that vi is tainted and gives a schedule that our tool can
follow to deterministically replay the taint propagation.
Here, the encoding method is not our contribution, but we
still illustrate it for integrity.

Algorithm 2. TraceEnlargement(Trace p, TaintSet G,
PotentialTaintSet �p)

1: Translate p into a quantifier free first order logic formula ’p;
2: for each v 2 �p � G do
3: if ’p ^ v:tag is satisfiable then
4: G.add(v);
5: end if
6: end for
7: return ’p;

Partial Order Constraint (’po). This constraint specifies the
potential ordering of the instructions in an execution trace
p. In this paper, we consider sequential consistency memory
model only. If instruction i happens before instruction j in p
and both belong to the same thread, we enforce oi < oj.

The inter-thread ordering is guarded by synchronization
primitives. In multithreaded programs, the most popular
synchronization operations are lock/unlock and wait/signal.

Fig. 8. Code snippet with input (a ¼ 1; b ¼ 0) and shared variables x; y. Fig. 9. An example for detecting potentially tainted set.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 921

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

Consider two lock/unlockpairs on the samemutex. The follow-
ing constraint mandates that one pair must be executed either
before or after another:

’L½m�
po ¼

^
li=ui;lk=uk2L½m�

oðuiÞ < oðlkÞ _ oðukÞ < oðliÞ; (8)

where L½m� denotes the set of lock/unlock pairs on mutex
lock m, and oðxÞ eepresents the order of synchronization
operation x.

Given a condition variable cd, let WT be the set of wait
operations on cd, and SG the set of signal operations on cd.
The constraint for wait/signal is:

’W ½cd�
po ¼

� ^
w2WT

_
s2SG

ðow < os < ow0 ^mw
s ¼ 1Þ

�

^
’WT
SG

^
’SG
WT ;

(9)

where ow0 denotes the next event of wait on cd immediately
after w in the same thread, ow < os < ow0 indicates that a
signal operation s must be executed between w and w0, and
mw

s ¼ 1 flags that s is mapped to w. Equation (10) defines

’WT
SG and ’SG

WT , in which ’WT
SG enforces that each wait opera-

tion w needs to map to at least one signal operation, and
’SG
WT restricts that each signal operation s signals at most one

wait operation.

’WT
SG ¼

^
w2WT

�� X
s2SG

mw
s

�
� 1

�

’SG
WT ¼

^
s2SG

�� X
w2WT

mw
s

�
� 1

�
;

(10)

Constraints on other types of synchronization primitives
are modeled similarly. The conjunction of these intra- and
inter-thread constraints relaxes the total order observed in
an execution trace p. Its encoding method is derived from
our previous work [20].

Program Semantics Constraint (’sm). The constraint maps
executed individual instructions to corresponding formula.
We skip detailed presentation as it requires mapping rules
for complete LLVM syntax. However, the mapping rules
are straightforward. Note that ’sm enforces the same control
flow for all encoded thread interleavings as a derivation
leads to an execution with instructions unknown to a trace.
This encoding is also derived from our previous work [20].

Taint Propagation Constraint (’tp). The taint propagation
constraint specifies the taint status for data derived from
tainted or untainted operands. For each instance vi, we asso-
ciate with it a Boolean value tag vi:tag that indicates whether
vi is tainted. If vi is a tainted source such as untrusted input,
vi:tag ¼ true. If vi is a constant, vi:tag ¼ false. Let pt be the
subtrace of p that is projected on Thread t. Taint is then prop-
agated through pt in a straightforward manner, e.g., the
result of a binary operation such as + is tainted if either oper-
and is tainted, an assigned variable is tainted if the right-
hand side value is tainted, and so on. Different applications
of taint analysis can use different policy decisions, and our
encoding can be adapted to accommodate different taint pol-
icies. Note that the constraint only handles taint propagation
within an individual thread. The inter-thread taint propaga-
tion is handled by interleavingmatching constraint.

Interleaving Matching Constraint (’im). The program
semantics and taint propagation constraints consider each
thread individually. In multithreaded programs different

threads communicate data via shared variables. The com-
plexity of multithreaded programs is due to the non-deter-
ministic nature of such communication. The purpose of
interleaving matching constraint is to enumerate all possible
matchings between read and write instructions of shared
variables. Consider a shared variable v. Let RðvÞ and WðvÞ
be the sets of reads and writes on v, respectively. We use vr
to denote the read of v at instruction r, and vw the write of v
at instruction w. In addition, let or and ow be the order varia-
bles of r and w, and vr:tag and vw:tag be the taint tags. The
interleaving matching constraint on v is:

’vim ¼
^

r2RðvÞ

_
w2WðvÞ

fðvr ¼ vw ^ vr:tag ¼ vw:tag ^ ow < orÞ

^
^

x6¼w2WðvÞ
ðox < ow ^ or < oxÞg:

(11)

The constraint above describes that, vr matches vw if r is
executed after w, and there are no other writes to v in
between. If vr matches vw, the value read at r is the same as
the value written at w, and taint propagates though this
read-after-write chain. We name the component vr ¼ vw as
value matching term and vr:tag ¼ vw:tag as taint matching
term. Finally, let V be the set of shared variables, the inter-
leaving matching constraint is:

’im ¼
^
v2V

’v
im: (12)

Note that in our implementation value matching and
taint matching terms do not always appear together. If a
shared variable access instance does not depend on any
tainted source, there is no need to include it in the interleav-
ing matching constraint. If the purpose of encoding is to
locate alternative branches, there is no need to include a
value matching term if the corresponding variable instance
does not depend on any branches. The data and control
dependencies in sequential programs are well-defined.
These classical definitions can be used for intra-thread
dependence analysis. In order to address the inter-thread
dependence relation, we compute vector clocks on a multi-
threaded trace. For a read instance r and a write w instance
on the same shared variable, if the vector clock does notman-
date that r must happen before w, we consider RAW (read-
after-write) may happen and there is a inter-thread data flow
from w to r. A shared variable access instance depends on
a tainted source or a branch if there exists any transitive
intra- and inter-thread dependency. Our analysis is an over-
approximation, which affects performance (unnecessary
taint matching terms are added) but not correctness. Con-
sider the code snippet shown in Fig. 10, where the set of
shared variable access instances is fy@L3; x@L4; x@L6;
y@L7g. For locating alternative branches, the set of instances
that need be considered for valuematching is fy@L3; y@L7g.
It is disjoint from the set of instances fx@L4; x@L6g that
need to be considered for taint matching.

3.4 Alternative Path Search
The pseudo-code for Alternative Path Search is given
in Algorithm 3. The formula ’p, i.e., ’sm ^ ’po ^ ’tp ^ ’im, is
obtained from component Trace Enlargement. Two types
of constraints are not needed for the search of alternative
paths. Any constraints related to taint are not necessary,
which include the taint propagation ’tp and the taint

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

matching terms in the format of vr:tag ¼ vw:tag. The second
type of constraints are those terms that encode a branch condi-
tion. They must be removed, otherwise they cause conflicts
with newly added branch constraints. For each ci 2 C, we
checkwhether it can be the first branch inp that can be negated.
That is, any branches before ci must produce the same out-
comes as in p. The potential path can be represented as

’ci
p ¼ ’0

p ^ :ci ^
^
cj 6¼ci

ðoj < oi ! cjÞ: (13)

In the above formula, ’0
p denotes ’p with aforementioned

two types of constraints removed, and oi represents the
order of ci. If ’

ci
p is satisfiable, we extract its solution that

gives the schedule up to ci. Note that the schedule after ci is
invalid because the negation of ci leads to unknown behav-
ior that cannot be determined statically. However, the
schedule prefix si up to ci is valid and we save it as a to-be-
explored schedule in S. Note that when conducting
symbolic analysis on the new paths generated from si, we
need to re-encode new constraints for the paths.

Algorithm 3. AltPathSearch(Formula ’p, ScheduleSet S)

1: Remove branch constraints C ¼ fc1; c2; . . . ; cng from ’p;
2: Remove constraints about taint propagation from ’p;
3: for each ci in C do
4: ’ci

p ¼ ’p ^ :ci ^
V

cj 6¼ci
ðoj < oi ! cjÞ.

5: if ’ci
p is satisfiable then

6: Obtain a schedule si up to branch ci from the solution
of ’ci

p .
7: S.add(si);
8: end if
9: end for

For sequential programs, exhaustive search algorithms
such as depth-first search (DFS) can iterate all possible execu-
tion traces by backtracking. Unfortunately such a strategy is
not valid for multithreaded programs, otherwise valid execu-
tions can bemissed. This is illustrated in Fig. 11 that shows an
execution with multiple branches belonging to two threads t1
and t2. In the figure a solid circle denotes the branch being
negated and dotted arrow indicates a new execution caused
by the negation. Let Trace 1 be the initial execution with
branch sequence hb1; b2; b3; b4; b5; b6i. Assuming b6, b5 and b4
cannot be negated, the first negation of b3 leads to a Trace 2
with branch sequence hb1; b2; :b3; bk; bm; bni. If bn in Trace 2
cannot be negated, the negation of bm leads to Trace 3 with
branch sequence hb1; b2;:b3; bk;:bm; bhi. Suppose no other
branches can be negated after Trace 3, the traversal termi-
nates. This is a typical DFS procedure for exploring paths of
sequential programs. Such traversal has an implicit assump-
tion, which is the fixed order of the branches. That is, when a
branch is negated, the relative order of the branches before the
selected branch remain the same. The assumption is no longer
valid for multithreaded programs. Consider a valid execution
Trace 4, where bk is negated. In order to negate bk in thread t1,
bm in t2 has to happen before bk. Note that in DFS bk never

happens before bm. This example shows when deciding
whether a branch can be negated, we have to consider all the
branches instead of only those branches that are executed
before this branch. In addition, the positions of b1 and b2 are
switched in Trace 4 aswell. Therefore, even for those branches
that are executed before the branch under consideration, their
relative order may be changed. As a result, in our encoding
when a branch bi is selected, we only fix the outcomes of the
branches before bi to ensure bi is the first negated branch in
the new execution. We allow any branch to happen before bi,
and the order of the branches before bi is arbitrary.

4 EMPIRICAL STUDY

We have implemented the proposed method in a software
tool that targets multithreaded C programs implemented
with the POSIX thread library. The tool is developed on top of
LLVM [21], KLEE [22] and Z3 [23]. Note that KLEE does not
by itself support multi-threading. Although Cloud9 [24] has
extended KLEE to support a limited number of POSIX thread
routines, it does not attempt to cover all feasible thread inter-
leavings. Indeed, Cloud9 allows for thread context switches
only before certain POSIX thread synchronizations but not
before shared variable reads/writes. We have developed a
customized thread scheduler to support multithreading. The
scheduler is able to guide program executions under a given
thread interleaving specification. We have also implemented
a listener to collect executed instruction instances and an
encoder to translate a trace into a logic formula. In particular,
if the parameters of system functions and libraries are tainted,
their return values are viewed as being tainted. In this paper,
we don’t consider control flow. In our evaluation, we do not
handle the loops over shared variables. Though there is no
this type of loops in our evaluation, it really be a threat to the
completeness of proactive debugging.

In addition, we need to introduce the identification of
shared variables in KLEE. For each variable, KLEE sets a
corresponding memory object, one of whose fields labels
whether the variable is global. When KLEE running a multi-
threaded program under a concrete program, we identify
shared variables according to the labeling field. For we all
know, KLEE provides no false negatives in identifying
shared variables during concrete execution.

4.1 Experimental Setup
There has been very little research on dynamic taint analysis
of multithreaded programs. The one that is closest to ours is
DTAM [14]. In order to compare our approach against theirs
we have re-implemented the three approaches proposed in
DTAM. DTAM-serial (DS) serializes a multithreaded

Fig. 11. Counter-example for depth-first search.

Fig. 10. Code snippet with tainted a and shared variables x; y.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 923

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

execution, and then propagates taint tags along the serialized
schedule. This approach basically ignores threading and
leads to under-tainting, as discussed in Section 1. DTAM-
parallel (DP) propagates a taint tag from one thread to
another through write and read accesses to the same shared
objects. Although DP implicitly captures the effects of many
possible interleavings when merging the thread-modular
results offline, the approach causes over-tainting because it
ignores the happens-before relation. For example, if there
are two statements fromdifferent threads and y=xmust hap-
pen before x = input() through thread synchronization,
DTAM-parallel still considersy tainted because of the shared
variable x. DTAM-hybrid (DH) tracks synchronization oper-
ations and takes into account the must-happens-before rela-
tion to address the above over-tainting problem. It also
record vector clocks for each read and write event, in addi-
tion to the shared events and tags. Such information is used
for determining the must-happens-before relation during
the aggregation step. The paper [14] shows that DH can be
both over- and under-tainting, although it is more accurate
than DP. Note that DP and DH can’t generate interleaving
schedules to reproduce the detected tainted instances. To
conduct taint analysis on a single trace, our approach is
reduced to predictive symbolic analysis without guided exe-
cution as there is no need to find alternative branches. That
is, our approach becomes Symbolic Taint Analysis for
Multithreaded Programs (STAM).

Since DTAM approaches (including DS, DP and DH) do
not explore multiple traces, we integrate the three DTAM
algorithms within our framework to conduct experiments
on taint analysis under a single test input. In particular, we
utilize the capability of Alternative Path Search (APS)
to guide multiple paths, and then for each trace we apply
DTAM algorithms instead of predictive symbolic analysis.
We name the three DTAM+APS algorithms APS-DS, APS-
DP, APS-DH, respectively. In summary, we have a total of
eight algorithms to conduct taint analysis. Among them DS,
DP, DH and STAM consider a single trace, while APS-DS,
APS-DP, APS-DH and DSTAM consider all the feasible
traces under a single input vector.

Our empirical study is conducted on 13 benchmarks
obtained from application suites including SPLASH2 [26]
and PARSEC [25]. Due to the scalability issue we are not
able to complete all the SPLASH2 and PARSEC benchmarks
within a 2-hour time limit. In order to conduct a sufficient
comparison we add testing programs from other sources.
Table 1 gives basic statistics regarding the benchmarks. Col-
umn Prog shows the names of the benchmarks and where
they are obtained. Column LOC lists the lines of source code
in a program. Note that our analysis is based on execution
traces so LOC only gives indirect measurement of the size of
our experiments. Column #I gives the average number of
instructions in a trace. An assumption of our approach is
program termination. A program with infinite loops cannot
be analyzed with our offline approach. The number of
threads is given in Column Th. Column P gives the total
number of paths under the given input. Column #B lists the
number of branches on an interleaving on average. Column
NB gives the percentage of flippable branches in an inter-
leaving on average. The data show that only a small portion,
with an average of 5.5 percent, of branch instances are
scheduling-sensitive. For programs such as blacksholes, fft,
lu-c and lu-nc, the portion is not more than 1 percent.

Table 2 provides the time usage of all approaches. Mean-
while, DSTAM computes a database that includes the prop-
agation evidences of all the tainted instances. Each of them
can be replayed in the prototype of DSTAM. Column APS
lists the time consumption by alternative path search. Col-
umn TE stands for the time usage by trace enlargement.
Column Run gives the time when executing instructions in
KLEE. We can find that the time cost of constraint solving
accounts for 99.7 percent of the total time cost on average.
Hereon, we provide the time usage to admit that scalability
is an issue with our approach. In terms of time cost, the
DTAM approaches are more efficient. If an ideal SMT solver
is provided, we believe that DSTAM can greatly improve
scalability. In the rest of this section we only focus on the
accuracy comparison.

4.2 Taint Analysis on a Single Trace
For approaches DS, DP, DH and STAM, they conduct
taint analysis on a single trace. As shown in Table 3, we
compare the four approaches in terms of accuracy when
analyzing taint on a single trace. Columns with heading
VI list the number of tainted instances. There are two
group of numbers in each column. The numbers after
the slash give the quantity of tainted instances in an exe-
cuted trace. The numbers before the slash give the data
after mapping the instances in a trace to source code.
Since multiple instances in a trace can map to the same
source code, the numbers in front of the slash are
smaller. A variable in a statement is considered tainted
if there exists at least one trace where the instance of the
variable is tainted. Columns with headings FP and FN
give the percentile of false positives and false negatives,
respectively.

Without considering the limits of SMT solvers, such as
the incapability of handling non-linear expressions, STAM
is able to accurately detect all tainted instances of a multi-
threaded trace (i.e., all the valid permutations of the instruc-
tions in the trace). The statistics for false positives and false
negatives are relative to STAM. As illustrated in the last row,
on average DS produces 14.6 and 16.4 percent false negatives
in terms of source code and trace instances, respectively. DP
produces 18.2 and 31.2 percent false positives, and DH pro-
duces 12.9 and 16.2 percent false positives. Note that in the-
ory DS does not produce any false positives and DP does not

TABLE 1
Benchmarks

Prog. LOC Th #I P #B NB

blackscholes [25] 639 5 16,914 1 167 0.0%
fft [26] 1,482 3 33,646 2 977 0.2%
lu-c [26] 1,401 3 22,594 2 854 0.2%
lu-nc [26] 1,182 3 10,265 2 2,020 0.1%
radix [26] 1,547 3 6,947 3 363 3.3%
aget [14] 1,157 3 5,744 2 355 6.7%
pbzip [14] 7,890 4 69,718 27 1,594 1.4%
pfscan [14] 998 3 6,206 30 54 17.2%
pcopy [27] 579 2 1,725 6 53 5.4%
pnscan [14] 1,190 2 588 1 10 0.0%
swarm [28] 2,286 5 44,064 1 766 0.0%
queue [29] 155 3 924 2 17 5.9%
stack [29] 109 3 486 33 24 31%

Avg. 1,095.6 3.2 16,909 7.8 484 5.5%

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

produce any false negatives. That is, DS is under-tainting
andDP is over-tainting.2

STAM considers only and all the feasible permutations of
the events in a trace. We illustrate via some code snippets
how imprecision happens using DS, DP and DH. Fig. 12
shows a false negative when applying DS on program stack.
Since DS does not consider permutations of the trace
h1; . . .4; 5 . . .i, the variable instances of top are not claimed
tainted at Lines 2 and 3. The result is not correct as they are
tainted if Line 1 executes after Line 5.

Fig. 13 illustrates a false positive when applying DP on
program fft. The variable instance x½2� at Line 5 is tainted
due to the potential data flow 2 ! 4 ! 5. DP further claims
that x½2� at Line 8 is tainted. However, x½2� at Line 8 can
never read from x½2� at Line 5.

One of the false positive reported by DH on program lu-c is
illustrated in Fig. 14, where the variable instance MyNum at
Line 6 is actually not tainted. If the false branch at Line 2 is
taken,Global ! id at Line 3 is not executed at all, soMyNum at
Line 6 cannot be tainted by Global ! id at Line 6 when
Global ! id at Line 6 reads the value assigned at Line 3. If the
true branch at Line 2 is taken, Line 2 must execute after Line 6.

Thus, it is impossible forGlobal ! id at Line 6 to read from the
value assigned at Line 3.However,DHreports that the variable
instance Global ! id at Line 6 is tainted because it fails to rec-
ognize thiswith happens-before implemented by vector clock.

4.3 Taint Analysis For Single Input
In Table 4 we compare accuracy among the four approaches
on all possible executions under a given input. Since report-
ing tainted instances on multiple traces is difficult to corre-
late instances from different runs, we map the instances to
source code and report the statistics on tainted statements in
a program only. Column SV gives the number of tainted
static variables. Again, without considering the limits of
SMT solvers, DSTAM is able to precisely detect all tainted
instances under a given input. Therefore, the statistics for FP
and FN in Table 4 are relative to DSTAM. As illustrated in
the last row, on average APS-DS reports 10.3 percent false
negatives, APS-DP reports 15.1 percent false positives, and
APS-DH reports 10 percent false positives. The false positive
rate for APS_DS, and the false negative rate for APS_DP and
APS_DH are not included in the table as they are all zero.

4.4 Single Trace versus Single Input
Our approach enhances the capability of taint analysis by not
just considering a single execution, but multiple executions

TABLE 3
Accuracy Comparison on Single Trace

Prog.
DS DP DH STAM

VI FN FP VI FN FP VI FN FP VI

blackscholes 18/152 0.0%/0.0% 0 18/160 0 0.0%/5.3% 18/160 0 0.0%/5.3% 18/152
fft 42/582 10.6%/7.8% 0 52/780 0 10.6%/23.6% 49/680 0 4.3%/7.8% 47/631
lu-c 29/154 19.4%/14.0% 0 47/284 0 30.6%/58.7% 40/210 0 11.1%/17.3% 36/179
lu-nc 7/16 65.0%/68.0% 0 33/151 0 65.0%/202.0% 26/91 0 30.0%/82.0% 20/50
radix 24/71 11.1%/6.6% 0 32/107 0 18.5%/40.8% 32/103 0 18.5%/35.5% 27/76
aget 14/16 22.2%/23.8% 0 20/22 0 11.1%/4.8% 20/22 0 11.1%/4.8% 18/21
pbzip 8/9 0.0%/0.0% 0 8/9 0 0.0%/0.0% 8/9 0 0.0%/0.0% 8/9
pfscan 25/34 7.4%/5.6% 0 38/47 0 40.7%/30.6% 36/45 0 33.3%/25.0% 27/36
pnscan 19/22 0.0%/0.0% 0 19/22 0 0.0%/0.0% 19/22 0 0.0%/0.0% 19/22
pcopy 12/22 0.0%/8.3% 0 12/25 0 0.0%/4.2% 12/25 0 0.0%/4.2% 12/24
swarm 13/224 0.0%/0.0% 0 15/272 0 15.4%/21.4% 15/256 0 15.4%/14.3% 13/224
queue 2/8 33.3%/11.1% 0 4/10 0 33.3%/11.1% 4/10 0 33.3%/11.1% 3/9
stack 5/10 16.7%/67.7% 0 7/32 0 16.7%/3.2% 7/32 0 16.7%/3.2% 6/31

Avg. 17/109 14.6%/16.4% 0 23/148 0 18.2%/31.2% 22/128 0 12.9%/16.2% 20/113

TABLE 2
Time Usage of Eight Algorithms

Prog. DS DP DH STAM APS-DS APS-DP APS-DH DSTAM APS TE Run

blackscholes 0.042 0.044 0.045 2.046 15.924 15.926 15.926 17.970 15.839 2.046 0.085
fft 0.160 0.166 0.168 972.555 1953.068 1953.081 1953.086 3898.178 1952.270 1945.110 0.798
lu-c 0.060 0.063 0.064 1070.155 3465.131 3465.136 3465.138 5605.441 3464.830 2140.310 0.301
lu-nc 0.029 0.030 0.030 72.178 29.070 29.073 29.074 173.426 28.928 144.356 0.143
radix 0.025 0.026 0.026 11.602 105.958 105.961 105.962 140.765 105.463 34.807 0.495
aget 2.155 2.155 2.156 0.405 10.426 10.428 10.428 11.237 3.962 0.810 6.464
pbzip 0.271 0.335 0.337 0.052 1212.857 1214.573 1214.641 1214.271 1193.890 1.414 18.967
pfscan 0.018 0.019 0.019 0.274 35.597 35.620 35.627 43.823 32.314 8.227 3.283
pcopy 0.056 0.057 0.057 21.492 1065.827 1065.831 1065.832 1194.779 1065.150 128.952 0.677
pnscan 0.019 0.019 0.019 0.004 0.039 0.039 0.039 0.043 0.020 0.004 0.019
swarm 0.086 0.100 0.102 18.840 22.152 22.165 22.167 40.992 22.066 18.840 0.086
queue 0.002 0.002 0.003 0.027 0.086 0.087 0.087 0.136 0.077 0.049 0.007
stack 0.002 0.002 0.002 0.631 81.895 81.904 81.908 102.727 81.412 20.832 0.483

AVG 0.225 0.232 0.233 166.943 615.233 615.371 615.378 957.214 612.786 341.981 2.447

2. DP can still be under-tainting under fixed inputs instead of fixed
executions.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 925

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

under a single input. To the best of our knowledge, we are the
first to seek completeness for multithreaded programs under
fixed inputs. In this section we compare the accuracy with
and without multiple trace exploration. Without considering
multiple traces, all four methods DS, DP, DH and STAM are
under-tainting, even though they may infer other possible
interleavings with the same set of instruction instances.
The experimental results are given in Table 5. ColumnD gives
the difference in the number of tainted statements between
each pair of methods on single trace and multiple traces.
Note that the tainted instances are mapped to statements in
source code and the data are all referring to source code. Since
there is only one trace under the given input for programs
blackscholes, pnscan and swarm, APS-Dxmethods and DSTAM
are not able to findmore tainted statements. In addition, scien-
tific computation programs, including fft, luc, and lunc, have
very few paths so the change of control flow has little impact
on taint analysis. As illustrated in last row, on average DS,
DP, DH, and STAM detect 12.3, 5.1, 5.1, and 6.8 percent less
tainted statements than their counterparts for the 13 bench-
marks. Note that the data may not reflect the actual difference
between the methods as the tainted instances are mapped to
static source code. The difference between the number of
dynamic tainted instances is obviously greater.

4.5 DSTAM versus DS over a Same Time Bugdet
In this section, we compare DSTAM with DS on the num-
ber of tainted shared variables over a same time budget.
The evaluation is conducted on two random programs. As
shown in the Fig. 15, the X-axis and Y-axis stand for time
consumption and the number of tainted variables, respec-
tively. In this experiment, we repeatedly and randomly
run programs and collect the new tainted shared variables
in each run with DS. The total running time is same as that
of DSTAM. For radix, both DSTAM and Random collect 24
tainted shared variables in the first execution. Later, Ran-
dom does not encounter any new taint and DSTAM finds
3 more taints by performing symbolic analysis. For stack,
both DSTAM and Random explore 5 tainted shared varia-
bles in the first execution. In the later exploration, Random
finds 3 more taints and then keeps the same result.

DSTAM gets 5 more taints. From this result, we can con-
clude that DSTAM is not better than Random running in
prophase, but out-performs it in post phase.

4.6 Discussion
From the above evaluation, we find that DTAM approaches
are more efficient in terms of time cost, and DSTAM per-
forms better in terms of precision. Furthermore, DSTAM
has two advantages that DTAM and even current DTA
methods do not have. On one hand, DSTAM offers the capa-
bility to answer queries such as whether a variable instance
is tainted under an input while existing approaches cannot.
On the other hand, DSTAM provides a witness interleaving
for each tainted instance, which may contribute to exploit a
concurrency attack. Given a multithreaded program and an
input, our prototype tool creates a tainted instance database
so the cost of multiple queries can be amortized.

Additionally, failing to solve the satisfiable constraint is a
common issue in a great number of SMT solving problems.
When a satisfiable constraint is too huge, the SMT solver
may give an unsatisfiable or unknown result. We plan to
handle the real-world programs in our future work. One
possible solution is to set up the time budge to guarantee
efficiency. Meanwhile, reducing the unnecessary constraint
formulas, simplifying constraint, or over-approximation
encoding, would be useful to improve the ability of SMT
solving.

4.7 Validate Completeness
Our approach not only can compute an interleaving sched-
ule to replay a scheduling-sensitive taint instances, but also
can decide that an instance never can’t be tainted under a
given input. To validate the correctness and completeness
of our approach, we compare it with the three methods of
DTAM on the detection rate of injected malicious code.

Fig. 14. Code snippet in lu-c with shared variables Global;MyNum,
whereGlobal ! id ¼ 1 initially.

Fig. 12. Code snippet in stack with shared variables top; arr.

Fig. 13. Code snippet in fft with shared variables x.

TABLE 4
Accuracy Comparison on Single Input (Multiple Traces)

Prog.
APS-DS APS-DP APS-DH Ours

SV FN SV FP SV FP SV

blackscholes 18 0.0% 18 0.0% 18 0.0% 18
fft 42 10.6% 52 10.6% 49 4.3% 47
lu-c 33 8.3% 47 30.6% 40 11.1% 36
lu-nc 12 42.9% 33 57.1% 26 23.8% 21
radix 26 3.7% 32 18.5% 32 18.5% 27
aget 15 21.1% 20 5.3% 20 5.3% 19
pbzip 8 0.0% 8 0.0% 8 0.0% 8
pfscan 26 7.1% 39 39.3% 37 32.1% 28
pnscan 19 0.0% 19 0.0% 19 0.0% 19
pcopy 12 0.0% 12 0.0% 12 0.0% 12
swarm 13 0.0% 15 15.4% 15 15.4% 13
queue 4 20.0% 6 20.0% 6 20.0% 5
stack 8 20.0% 10 0.0% 10 0.0% 10

Avg. 18 10.3% 24 15.1% 22 10.0% 20

926 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

These malicious codes are designed to achieve leaking sen-
sitive information, totally including three types shown as in
Figs. 16, 17 and 18. The details are as follows.

Type I gives a real leakage that avoids the detection of DS
sometimes.When execution order in Fig. 16 is 1-3-4-2, the sen-
sitive data is leaked. DS can detect the leakage under the exe-
cution. So the leakage is real. But DS fails to detect the leakage
under execution 1-2-3-4. Type II gives an infeasible leakage
that DP reports. Although only execution 1-2-3-4 is valid in
Fig. 17, DP still falsely views sendData(y) as a leakage.
Type III gives an infeasible leakage that DH report. Besides
the synchronization statement in Type II, program semantics
also can constrain the execution order between threads. In
Fig. 18, if Line 3 takes True branch, Line 2must happen before

Line 3. Thus, Line 1 happens before Line 4. Since DH is inca-
pable of analyzing semantics, it will view sendData(y) as a
leaking statement. However, we believe that our approach
can give a definite answer to whether there is an information
leakage. The reason is that symbolic analysis is capable of pre-
dicting multiple interleavings and computing schedules that
lead to the execution of newpaths.

To validate that, we inject the malicious codes into the 13
benchmarks and assume that the taint source is sensitive
information. If shared variable y at statement sendData

(y) is tainted by taint source, we think the sensitive infor-
mation is leaked. Therefore, we just need to check whether
y at statement sendData(y) in the injected codes is
tainted or not. We conduct comparison on the modified
benchmarks between DSTAM and DTAM.

Table 6 gives the comparison results. Column # gives the
number of seeded leakages for the corresponding type.
Column Dx and Ours give the number of to-be-verified lea-
kages detected by method Dx and DSTAM, respectively. As
we expected, DS just detects 23 percent Type I leakages. The
concrete number of detection result is not most concerned
to us since the execution of DS is random. Here, we just
show the completeness of our method. DP and DH falsely
treat the injected codes of Type II and Type III as real
leakages, respectively. Our approach finds all of leakages
completed by Type I codes. Meanwhile, it also definitely
judge that both Type II and Type III can’t achieve leaking
information.

5 RELATED WORK

In the past few years, most work on dynamic taint analysis
has focused on either overhead reduction or accuracy
improvement. Beside DTA techniques, we also describe
related work on predictive analysis.

5.1 Overhead Reduction
The performance overhead mainly comes from two sources.
First, as typical DTA tools [1], [14], [30], [31], [32], [33] are
built on dynamic binary instrumentation (DBI) frameworks
such as PIN [34], Valgrind [35], and DynamoRio [36], there
are switches between original source code and instrumented
code. Second, DTA tools need to track taint propagation
during the runtime.

TABLE 5
Comparison between Single Trace and Multiple Traces

Prog.
DS APS-DS DP APS-DP DH APS-DH STAM DSTAM

SV D SV SV D SV SV D SV SV D SV

blackscholes 18 0.0% 18 18 0.0% 18 18 0.0% 18 18 0.0% 18
fft 42 0.0% 42 52 0.0% 52 49 0.0% 49 47 0.0% 47
lu-c 29 12.1% 33 47 0.0% 47 40 0.0% 40 36 0.0% 36
lu-nc 7 41.7% 12 33 0.0% 33 26 0.0% 26 20 4.8% 21
radix 24 7.7% 26 32 0.0% 32 32 0.0% 32 27 0.0% 27
aget 14 6.7% 15 20 0.0% 20 20 0.0% 20 19 0.0% 19
pbzip 8 0.0% 8 8 0.0% 8 8 0.0% 8 8 0.0% 8
pfscan 25 3.8% 26 38 2.6% 39 36 2.7% 37 27 3.6% 28
pnscan 19 0.0% 19 19 0.0% 19 19 0.0% 19 19 0.0% 19
pcopy 12 0.0% 12 12 0.0% 12 12 0.0% 12 12 0.0% 12
swarm 13 0.0% 13 15 0.0% 15 15 0.0% 15 13 0.0% 13
queue 2 50.0% 4 4 33.3% 6 4 33.3% 6 3 40.0% 5
stack 5 37.5% 8 7 30.0% 10 7 30.0% 10 6 40.0% 10

Avg. 16.8 12.3% 18.2 23.5 5.1% 23.9 22.0 5.1% 22.5 19.6 6.8% 20.2

Fig. 15. DSTAM versus random running on the number of explored
taints.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 927

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

Chang et al. propose the system that performs static
inter-procedural flow analysis to determine points in a
program where an attack could take place [37]. It then
performs taint tracking instrumentation of these loca-
tions. Similarly, in [38], Lam et al. propose a compiler
that performs taint instrumentation and requires source
code. Our approach requires source code as well, so the
optimization proposed in these tools can potentially be
adopted to simplify constraint construction, which leads
to performance enhancement.

TaintTrace [30] uses DynamoRIO instrumentation on
binaries to minimize register spilling by making use of dead
registers to store taint values. TaintEraser [1], based on
PIN, increases the speed of taint propagation by using
user annotated function summary. Ng et al. [39] propose to
propagate taint information at the basic-block instead of at
instruction level. Another approach to improve DTA perfor-
mance is to parallelize taint tracing. In [40], Ruwase et al.
present techniques on how to execute taint tracking code in
parallel by relaxing the rules of taint propagation. Since our
taint detection is mainly conducted by symbolic analysis, it
is challenge to exploit such runtime optimization.

5.2 Accuracy Improvement
DTA techniques have several challenges in achieving accu-
rate analysis results. Schwartz et al. [41] point out several
fundamental challenges including under-tainting and over-
tainting. A major cause of under-tainting is implicit flows
caused by control dependencies, which have been studied
since at least the 1970s. Examples of recent systems that
attempt this include DTA++ [15] and Dytan [11], which take
a subset of control dependencies into consideration and
propagate the taint with those dependencies. Bao et al. [16]
propose a concept of Strict Control Dependency to avoid
false alarms. Taint Dependency Sequences Calculus [17] can
be used to calculate a set of paths that need to be analyzed.
These tools can find more tainted variables without causing
the explosion of taints because they do not consider all the
control dependencies. We do not consider implicit flows in
DSTAM. However, this research is orthogonal to our work
and can be added to DSTAM.

There has been very little research on taint analysis
of multithreaded programs. The one closest to ours is
DTAM [14] that considers the impact of thread scheduling
on taint propagation. However, DTAM considers a single
execution, which does not cover all the possible execut-
ions under a single input. Mounier et al. [42] propose
an approach to predict the taint values on multithreaded
program by performing sliding window based static analy-
sis on a fragment of an execution trace. This approach
requires more data to be collected during the runtime. In
our approach we consider complete trace, although by
sacrificing completeness we can adopt sliding window
based static analysis. Butterfly Analysis [43], a model to

formalize multithreaded program, is built on a log based
architecture [44] to perform taint analysis on multithreaded
program. Our work considers not only the impact of sched-
uling non-determinism on a trace, but also its impact on
branches that leads to new traces. To the best of our knowl-
edge, we are the first to attempt a sound and complete taint
analysis for multithreaded programs under a fixed input.

5.3 Predictive Analysis
There is also a large body of work on predictive analysis of
the execution traces of a concurrent program. Wang
et al. [45], [46] introduce the first method for symbolic predic-
tive analysis, where they leverage SMT solvers to conduct
trace-based predictive analysis symbolically. Subsequently,
Farzan et al. [47] develop a tool called ExceptioNULL,
which leverages constraint solving based techniques to
detect concurrency bugs that result in null-pointer derefer-
ences. PECON [48] is a pattern-directed tool for searching a
partial and temporal order graph extracted from an execu-
tion trace, to detect general access anomalies and produce
the corresponding thread schedules. CLAP generates a
thread schedule to reproduce concurrent bugs by encoding
failed executions [49]. Huang et al. leverage constraint solv-
ing to detect data race on a trace, and take into account the
control flow information for a higher race detection
power [50]. Some researchers have focused on how to fix
concurrency bug with constraint solving. For example,
Wang et al. use unsatisfiability core to automatically locate
the root causes of the failing executions, and then compute
the potential repairs [51]. In order to fix atomicity violation
bug, Shi et al. verify whether synchronization is sufficient in
the failing executions with the SMT solver [52]. However,
these aforementioned methods and other predictive analy-
sis based techniques known to us only conduct analysis on
the logged execution traces without inferring new traces
with different instructions. In contrast, our new method
leverages predictive symbolic analysis to guide the new
trace exploration, and then leverages guided execution to

Fig. 18. Type III—False positive for DH.

Fig. 17. Type II—False positive for DP.

Fig. 16. Type I—False negative for DS.

TABLE 6
Validate the Correctness of Our Approach

Prog. Type I Type II Type III

DS Ours # DP Ours # DH Ours

blackscholes 2 0 2 2 2 0 2 2 0
fft 2 1 2 2 2 0 2 2 0
lu-c 2 1 2 2 2 0 2 2 0
lu-nc 2 0 2 2 2 0 2 2 0
radix 2 1 2 2 2 0 2 2 0
aget 2 0 2 2 2 0 2 2 0
pbzip 2 1 2 2 2 0 2 2 0
pfscan 2 1 2 2 2 0 2 2 0
pnscan 2 0 2 2 2 0 2 2 0
pcopy 2 0 2 2 2 0 2 2 0
swarm 2 0 2 2 2 0 2 2 0
queue 2 1 2 2 2 0 2 2 0
stack 2 0 2 2 2 0 2 2 0

Total 26 6 26 26 26 0 26 26 0

928 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

drive the predictive symbolic analysis, to construct a mutu-
ally benefiting feedback loop.

Another tool that is related to our tool is TAME [53],
which aims at identifying schedule-sensitive branches in
concurrent programs, i.e., branches whose decision may
vary depending on the actual thread schedule. However, it
does not have the synergistic composition of symbolic
analysis and guided execution, which is the main contribu-
tion of this work.

5.4 Systematic Testing
Systematic testing technique aims to investigate a unique
scheduling in each run by controlling thread scheduling
with a predefined coverage information. It terminates when
the predefined coverage is reached. Generally speaking,
this technique has been developed in two major categories,
namely, coverage-driven [54], [55], [56], [57], [58], [59] and
stateless model checking [29], [60], [61], [62]. For example,
Wang et al. learn access patterns of shared variables on
good runs to capture the already tested concurrency scenar-
ios and cover the untested scenarios with the guide of the
tested scenarios [59]. Musuvathi et al restricted preemptive
context switches by using a small bounded number to sig-
nificantly alleviate the state explosion [60], [61]. It has
become an influential technique in practice since many
concurrency bugs can be triggered by interleavings with
few context switches. If DTA is combined with systematic
testing, we can capture more diverse data flow, which leads
to the detection of more tainted instances. Unfortunately,
since the number of possible interleavings can be enormous
(w.r.t. a given test input), explicitly exhausting all the inter-
leavings is a nearly impossible mission [59]. Even if these
techniques often stop after a specified coverage criterion or
context switch bound is reached, it is still possible for some
deeply hidden to-be-tainted instances to remain undetected.
However, via explicitly and implicitly investigating the
interleavings under a given input, DSTAM can analyze
every tainted instance in the whole interleaving space under
a given input.

6 CONCLUSION

We have presented a new taint analysis method called
DSTAM for multithreaded programs. By integrating sym-
bolic analysis with dynamic execution, our method is
able to offer systematic and complete coverage of the pro-
gram behaviors under a given input. If a tainted instance
is scheduling-sensitive, DSTAM can not only detect it
but also generate a schedule to reproduce it. The experi-
mental evaluation proves that DSTAM over-performs
DTAM [14] on accuracy comparison. To the best of our
knowledge, DSTAM is the first tool that is able to give a
definite answer to whether an instance is tainted under a
fixed input in a concurrent program. In fact, the chal-
lenges and problems in parallel software are intrinsically
complex and are impossibly solved by one step. This
paper just proposes a promising solution for taint analy-
sis of multithreaded programs. In order to handle scalable
software, we plan to design some strategies to enhance
scalability in the future work, such as reducing the explo-
sive search space. In addition, we will evaluate the effec-
tiveness of DTA + systematic testing for scalability, such
as coverage-driven testing.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Pro-
gram of China (2016YFB1000903), National Natural Science
Foundation of China (61632015, 61772408, U1766215,
U1736205, 61721002, 61472318, 61532015), Fok Ying-Tong
Education Foundation (151067), Ministry of Education Inno-
vation Research Team (IRT_17R86), and Project of China
Knowledge Centre for Engineering Science and Technology.

REFERENCES

[1] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall,
“TaintEraser: Protecting sensitive data leaks using application-
level taint tracking,” SIGOPS Oper. Syst. Rev., vol. 45, no. 1,
pp. 142–154, Feb. 2011.

[2] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on
commodity software,” in Proc. Netw. Distrib. Syst. Security Symp.,
2005.

[3] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforce-
ment: A practical approach to defeat a wide range of attacks,” in
Proc. 15th Conf. USENIX Security Symp., 2006, pp. 121–136.

[4] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Improving
application security with data flow assertions,” in Proc. ACM
SIGOPS 22nd Symp. Operating Syst. Principles, 2009, pp. 291–304.

[5] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni,
J. A. Blome, G. A. Reis, M. Vachharajani, and D. I. August, “Rifle:
An architectural framework for user-centric information-flow
security,” in Proc. 37th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2004, pp. 243–254.

[6] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection
and analysis,” in Proc. 14th ACM Conf. Comput. Commun. Security,
2007, pp. 116–127.

[7] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu,
“Android malware familial classification and representative
sample selection via frequent subgraph analysis,” IEEE Trans. Inf.
Forensics Security, vol. 13, no. 8, pp. 1890–1905, Aug. 2018.

[8] “Cve-2011-0990,” [Online]. Available: http://www.cvedetails.
com/cve/CVE-2011-0990, Apr. 2011.

[9] J. Yang, A. Cui, S. J. Stolfo, and S. Sethumadhavan, “Concurrency
attacks,” in Proc. 4th USENIX Workshop Hot Topics Parallelism,
2012, Art. no. 15.

[10] Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, and Z. Yang,
“Reviving sequential program birthmarking for multithreaded
software plagiarism detection,” IEEE Trans. Softw. Eng., vol. 44,
no. 5, pp. 491–511, Mar. 2018.

[11] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint
analysis framework,” in Proc. Int. Symp. Softw. Testing Anal., 2007,
pp. 196–206.

[12] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed white-
box fuzzing,” in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 474–484.

[13] D. Song, D. Brumley, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new
approach to computer security via binary analysis,” in Proc. 4th
Int. Conf. Inf. Syst. Security, 2008, pp. 1–25.

[14] M. Ganai, D. Lee, and A. Gupta, “DTAM: Dynamic taint analysis
of multi-threaded programs for relevancy,” in Proc. ACM SIG-
SOFT 20th Int. Symp. Found. Softw. Eng., 2012, pp. 46:1–46:11.

[15] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++:
Dynamic taint analysis with targeted control-flow propagation,”
in Proc. Netw. Distrib. Syst. Security Symp., 2011.

[16] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu, “Strict control
dependence and its effect on dynamic information flow analyses,”
in Proc. 19th Int. Symp. Softw. Testing Anal., 2010, pp. 13–24.

[17] D. Cear€a, L. Mounier, andM.-L. Potet, “Taint dependency sequen-
ces: A characterization of insecure execution paths based on
input-sensitive cause sequences,” in Proc. 3rd Int. Conf. Softw.
Testing Verification Validation Workshops, 2010, pp. 371–380.

[18] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and C. Pereira,
“Offline symbolic analysis for multi-processor execution replay,”
in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchitecture, 2009,
pp. 564–575.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 929

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

http://www.cvedetails.com/cve/CVE-2011-0990
http://www.cvedetails.com/cve/CVE-2011-0990

[19] D. Lee, M. Said, S. Narayanasamy, and Z. Yang, “Offline symbolic
analysis to infer total store order,” in Proc. 17th Int. Conf. High-Per-
form. Comput. Archit., 2011, pp. 357–358.

[20] X. Zhang, Z. Yang, Q. Zheng, Y. Hao, P. Liu, L. Yu, M. Fan, and
T. Liu, “Debugging multithreaded programs as if they were
sequential,” in Proc. Int. Conf. Softw. Anal. Testing Evol., Nov. 2016,
pp. 78–83.

[21] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Generation Optimization: Feedback-Directed Runtime
Optimization, 2004, Art. no. 75.

[22] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. 8th USENIX Conf. Operating Syst. Des.
Implementation, 2008, pp. 209–224.

[23] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proc.
Theory Practice Softw. 14th Int. Conf. Tools Algorithms Construction
Anal. Syst., 2008, pp. 337–340.

[24] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea,
“Cloud9: A software testing service,” SIGOPS Oper. Syst. Rev.,
vol. 43, no. 4, pp. 5–10, Jan. 2010.

[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec bench-
mark suite: Characterization and architectural implications,” in
Proc. 17th Int. Conf. Parallel Archit. Compilation Tech., 2008,
pp. 72–81.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodological consid-
erations,” in Proc. 22nd Annu. Int. Symp. Comput. Archit., 1995,
pp. 24–36.

[27] “pcopy,” [Online]. Available: ftp://ftp.lysator.liu.se/pub/unix/
pcopy, Dec. 2003.

[28] N. Jalbert and K. Sen, “A trace simplification technique for
effective debugging of concurrent programs,” in Proc. 18th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 57–66.

[29] L. Cordeiro and B. Fischer, “Verifying multi-threaded software
using smt-based context-bounded model checking,” in Proc. 33rd
Int. Conf. Softw. Eng., 2011, pp. 331–340.

[30] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient
flow tracing with dynamic binary rewriting,” in Proc. 11th IEEE
Symp. Comput. Commun., 2006, pp. 749–754.

[31] J.-W. Min, Y.-H. Choi, J.-H. Eom, and T.-M. Chung, “Explicit
untainting to reduce shadowmemory usage and access frequency
in taint analysis,” in Computational Science and Its Applications.
Berlin, Germany: Springer, 2013, pp. 175–186.

[32] J. Ma, P. Zhang, G. Dong, S. Shao, and J. Zhang, “Twalker: An
efficient taint analysis tool,” in Proc. 10th Int. Conf. Inf. Assurance
Security, 2014, pp. 18–22.

[33] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu, “Lift: A
low-overhead practical information flow tracking system for
detecting security attacks,” in Proc. 39th Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2006, pp. 135–148.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrum-
entation,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Imple-
mentation, 2005, pp. 190–200.

[35] N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proc. 28th
ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2007,
pp. 89–100.

[36] D. L. Bruening, “Efficient, transparent, and comprehensive run-
time code manipulation,” Ph.D. dissertation, Dept. of Electrical
Engineering and Computer Science, Massachusetts Inst. Technol.,
Cambridge, MA, 2004.

[37] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security
enforcement using dynamic data flow analysis,” in Proc. 15th
ACM Conf. Comput. Commun. Security, 2008, pp. 39–50.

[38] L. C. Lam and T.-C. Chiueh, “A general dynamic information flow
tracking framework for security applications,” in Proc. 22nd Annu.
Comput. Security Appl. Conf., 2006, pp. 463–472.

[39] B. H. Ng, E. Fernandes, A. Aluri, D. Velazquez, Z. Yang, and
A. Prakash, “Beyond instruction level taint propagation,” in Proc.
6th ACM Eur. Workshop Syst. Security, 2013.

[40] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran,
S. Chen, M. Kozuch, and M. Ryan, “Parallelizing dynamic
information flow tracking,” in Proc. 20th Annu. Symp. Parallelism
Algorithms Architectures, 2008, pp. 35–45.

[41] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in Proc.
IEEE Symp. Security Privacy, 2010, pp. 317–331.

[42] L. Mounier and E. Sifakis, “Dynamic information-flow analysis
for multi-threaded applications,” in Leveraging Applications of For-
mal Methods, Verification and Validation. Technologies for Mastering
Change. Berlin, Germany: Springer, 2012, pp. 358–371.

[43] M. L. Goodstein, E. Vlachos, S. Chen, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Butterfly analysis: Adapting dataflow analysis
to dynamic parallel monitoring,” ACM SIGARCH Comput. Archit.
News, vol. 38, no. 1, pp. 257–270, 2010.

[44] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons,
T. C. Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and
E. Vlachos, “Flexible hardware acceleration for instruction-grain
program monitoring,” ACM SIGARCH Comput. Archit. News,
vol. 36, no. 3, pp. 377–388, 2008.

[45] C. Wang, S. Kundu, M. Ganai, and A. Gupta, “Symbolic predictive
analysis for concurrent programs,” in Proc. 2nd World Congr.
Formal Methods, 2009, pp. 256–272.

[46] C. Wang, R. Limaye, M. Ganai, and A. Gupta, “Trace-based
symbolic analysis for atomicity violations,” in Proc. 16th Int. Conf.
Tools Algorithms Construction Anal. Syst., 2010, pp. 328–342.

[47] A. Farzan, P. Madhusudan, N. Razavi, and F. Sorrentino,
“Predicting null-pointer dereferences in concurrent programs,”
in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., 2012,
pp. 47:1–47:11.

[48] J. Huang and C. Zhang, “Persuasive prediction of concurrency
access anomalies,” in Proc. Int. Symp. Softw. Testing Anal., 2011,
pp. 144–154.

[49] J. Huang, C. Zhang, and J. Dolby, “Clap: Recording local
executions to reproduce concurrency failures,” ACM SIGPLAN
Notices, vol. 48, no. 6, pp. 141–152, 2013.

[50] J. Huang, P. O. Meredith, and G. Rosu, “Maximal sound predic-
tive race detection with control flow abstraction,” in Proc. ACM
SIGPLAN Conf. Program. Lang. Des. Implementation, 2014, pp. 337–
348.

[51] S. Khoshnood, M. Kusano, and C. Wang, “Concbugassist:
Constraint solving for diagnosis and repair of concurrency bugs,”
in Proc. Int. Symp. Softw. Testing Anal., 2015, pp. 165–176.

[52] Q. Shi, J. Huang, Z. Chen, and B. Xu, “Verifying synchronization
for atomicity violation fixing,” IEEE Trans. Softw. Eng., vol. 42,
no. 3, pp. 280–296, Mar. 2016.

[53] J. Huang and L. Rauchwerger, “Finding schedule-sensitive
branches,” in Proc. 10th Joint Meet. Found. Softw. Eng., 2015,
pp. 439–449.

[54] H. Wang, T. Liu, X. Guan, C. Shen, Q. Zheng, and Z. Yang,
“Dependence guided symbolic execution,” IEEE Trans. Softw.
Eng., vol. 43, no. 3, pp. 252–271, Mar. 2017.

[55] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, “Testing con-
current programs to achieve high synchronization coverage,” in
Proc. Int. Symp. Softw. Testing Anal., 2012, pp. 210–220.

[56] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A cov-
erage-driven testing tool for multithreaded programs,” in Proc.
ACM Int. Conf. Object Oriented Program. Syst. Lang. Appl., 2012,
pp. 485–502 .

[57] J. Yu and S. Narayanasamy, “A case for an interleaving
constrained shared-memory multi-processor,” in Proc. 36th Annu.
Int. Symp. Comput. Archit., 2009, pp. 325–336.

[58] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “Dapasa:
Detecting android piggybacked apps through sensitive subgraph
analysis,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 8,
pp. 1772–1785, Aug. 2017.

[59] C. Wang, M. Said, and A. Gupta, “Coverage guided systematic
concurrency testing,” in Proc. 33rd Int. Conf. Softw. Eng., 2011,
pp. 221–230.

[60] M. Musuvathi and S. Qadeer, “Iterative context bounding for
systematic testing of multithreaded programs,” in Proc. 28th ACM
SIGPLAN Conf. Program. Lang. Des. Implementation, 2007, pp. 446–
455.

[61] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent
programs,” in Proc. 8th USENIX Symp. Operating Syst. Des.
Implementation, 2008, pp. 267–280.

[62] K. E. Coons, S. Burckhardt, and M. Musuvathi, “Gambit: Effective
unit testing for concurrency libraries,” ACM SIGPLAN Notices,
vol. 45, no. 5, pp. 15–24, 2010.

930 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

ftp://ftp.lysator.liu.se/pub/unix/pcopy
ftp://ftp.lysator.liu.se/pub/unix/pcopy

Xiaodong Zhang received the BS degree in net-
work engineering from Southwest University,
China, in 2011. He is currently working toward
the PhD degree in the Department of Computer
Science and Technology, Xi’an Jiaotong Univer-
sity, China. His research interests include trust-
worthy software and analysis of multithread
programs.

Zijiang Yang received the BS degree from the
University of Science and Technology of China,
the MS degree from Rice University, and the PhD
degree from the University of Pennsylvania. He is
a professor of computer science with Western
Michigan University. Before joining WMU, he was
an associate research staff member at NEC Labs
America. He was also a visiting professor with
the University of Michigan from 2009 to 2013. His
research interests include software engineering
with the primary focus on the testing, debugging,
and verification of software systems. He is a
senior member of the IEEE.

Qinghua Zheng received the BS degree in com-
puter software in 1990, the MS degree in com-
puter organization and architecture in 1993, and
the PhD degree in system engineering in 1997
from Xi’an Jiaotong University, China. He was a
postdoctoral researcher at Harvard University in
2002. He is currently a professor in Xi’an Jiaotong
University. His research areas include computer
network security, intelligent e-learning theory and
algorithm, multimedia e-learning, and trustworthy
software. He is a member of the IEEE.

Yu Hao received the BS degree in automation
science and technology from Xi’an Jiaotong Uni-
versity, China, in 2015. He is currently working
toward the PhD degree in the Department of
Computer Science and Technology, Xian Jiao-
tong University, China. His research interests
include trustworthy software and analysis of mul-
tithread programs.

Pei Liu received the BS degree in computer sci-
ence and technology from Sichuan University,
China, in 2014. He is currently working toward
the MS degree in the Department of Computer
Science and Technology, Xi’an Jiaotong Univer-
sity, China. His research interests include trust-
worthy software and analysis of multithread
programs.

Ting Liu received his BS degree in information
engineering and PhD degree in system engineer-
ing from Xi’an Jiaotong University, Xi’an, China,
in 2003 and 2010, respectively. Currently, he is
an associate professor in Xi’an Jiaotong Univer-
sity. His research interests include CPS security
and software security. He is a member of the the
IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: TELL YOU A DEFINITE ANSWER: WHETHER YOUR DATA IS TAINTED DURING THREAD SCHEDULING 931

Authorized licensed use limited to: Monash University. Downloaded on November 12,2022 at 06:07:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

