
Information and Software Technology 138 (2021) 106619

A
0

I
c
Y
F

A

K
A
A
C
I
A

1

s
m
l
s
s
a
P
y

r
d
c
d
c
d
i
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

con2Code: Recommending code implementations for Android GUI
omponents
anjie Zhao, Li Li ∗, Xiaoyu Sun, Pei Liu, John Grundy
aculty of Information Technology, Monash University, Melbourne, Australia

R T I C L E I N F O

eywords:
ndroid
pp development
ollaborative filtering

con implementation
PI recommendation

A B S T R A C T

Context: Event-driven programming plays a crucial role in implementing GUI-based software systems such as
Android apps. However, such event-driven code is inherently challenging to design and implement correctly.
Despite a significant amount of research to help developers efficiently implement such software, improved
approaches are still needed to assist developers in better handling events and associated callback methods.
Objective: This work aims at inventing an intelligent recommendation system for helping app developers
efficiently and effectively implement Android GUI components.
Methods: To achieve the aforementioned objective, we introduce in this work a novel approach called
Icon2Code. Given an icon or UI widget provided by designers as input, Icon2Code first searches from a large-
scale app database to locate similar icons used in existing popular apps. It then learns from the implementation
of these similar apps and leverages a collaborative filtering model to select and recommend the most relevant
APIs.
Results: Our approach can achieve an 81% success rate when only five recommended APIs are considered,
and a 94% success rate if twenty results are considered, based on ten-fold cross-validation with a large-scale
dataset containing over 45,000 icons and their code implementations.
Conclusion: It is feasible to automatically recommend code implementations for Android GUI components
and Icon2Code is useful and effective in helping achieve such an objective.
. Introduction

With over 2.7 billion users worldwide using smartphones, it is no
urprise that the mobile app industry is thriving. It is expected that
obile apps will generate $189 billion in revenue by 2020, which is

arger than the projected 2020 GDPs of many developed countries,
uch as Canada and Australia. Android, occupying over 80% of market
hares, is undoubtedly the most prominent mobile platform. Currently,
round 2.8 million Android apps are available on the official Google
lay store for users to download, and this number continually grows
ear-over-year.

The huge number of available apps provides users with a wide
ange of opportunities to choose apps to install. However, it also forces
evelopers to develop and update their apps in a timely manner as
ompetition is some of the fiercest in the world [1]. As a consequence,
evelopers often adopt very short release cycles to keep their apps
ompetitive. This includes reasons such as to cope with new mobile
evices or OS versions, resolve negative user feedback, and rapidly
ntroduce new features. Nevertheless, it is non-trivial to keep releasing
pps in such short cycles, and developers are often under high-pressure

∗ Corresponding author.
E-mail address: Li.Li@monash.edu (L. Li).

to fix vulnerabilities, bugs, and compatibility issues [2–5] and to cope
with learning new development methodologies, libraries, and state-of-
the-art technologies [6–8]. To assist them the software engineering
community has proposed various approaches to ease developers’ work
in keeping their apps up-to-date [9,10]. For example, automated API
usage recommendation approaches to strengthen the development of
mobile apps [11,12], as well as other software systems [13–15]. These
approaches have been experimentally demonstrated to be useful and
effective in helping developers completing their implementation tasks.

Unfortunately, to the best of our knowledge, none of the existing
approaches have been proposed to support code implementation for
Android apps’ GUI component event handlers. GUI is a ubiquitous
feature for all mobile apps, which are event-centric programs driven
by rich graphical user interface interactions with users. One of the
major complexities of implementing mobile app GUIs is managing the
complicated and intertwined callback events from user interaction. This
often takes a major amount of coding and debugging efforts [12,16].
Fortunately, functional APIs are capable of helping developers imple-
ment the functionalities in callback methods. Indeed, as empirically
vailable online 27 May 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106619
eceived 29 October 2020; Received in revised form 28 February 2021; Accepted 7
 May 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:Li.Li@monash.edu
https://doi.org/10.1016/j.infsof.2021.106619
https://doi.org/10.1016/j.infsof.2021.106619
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106619&domain=pdf

Information and Software Technology 138 (2021) 106619Y. Zhao et al.
Fig. 1. Example of icon-bound GUI components and icon-associated event handler callback method. The callback method can access various methods and among which each of
them can further access different Android and third-party library APIs.
disclosed by Gao et al. [17], API recommendation is useful for the
development of Android app features, which could be strongly bound
to certain GUI icons (e.g., a camera icon could indicate a feature of
taking photos). Nevertheless, it is still a time-consuming task to identify
and correctly use the appropriate functional APIs to fulfill the callback
methods for implementing feature requirements [12,18].

To help developers efficiently and effectively implement these call-
back methods of GUI components, we propose a prototype tool called
Icon2Code to learn similar implementations from existing Android apps.
Icon2Code is based on the premise that similar GUI components are
often designed to have similar app behaviors e.g., a heart icon for
like, and this results in similar code implementations. Icon2Code aims
to capture such common implementations to assist app developers in
implementing interactions driven by GUI components. Icon2Code first
leverages a static analysis module to parse the code of existing apps
and build mappings from GUI components to their associated callback
methods. Then for each callback method, Icon2Code extracts its call
graph and summarizes all of its accessed APIs, including those of third-
party libraries. Finally Icon2Code leverages a collaborative filtering
algorithm to build a recommendation system. This takes as input a GUI
component (i.e., an icon) and outputs a list of code implementation
bundles learned from such apps sharing similar GUI components. The
main contributions of this work include:

• Icon2Code, a prototype tool that takes as input an icon or text
describing its purpose and outputs a ranked list of APIs recom-
mended for implementing the icon-associated callback method,
or event handler;

• a large-scale training database containing mappings from icons to
their code implementations;

• ten-fold cross-validation reveals that our Icon2Code approach is
useful and effective in recommending code implementation for
Android GUI components, achieving 81% success rate when only
the top five recommended APIs are considered, and a 94% success
rate if twenty results are considered.

Section 2 presents a motivating example for the need for Icon2Code.
Section 3 presents the approach and key workings of Icon2Code, and
Section 4 describes its evaluation. We discuss the threats to validity
and future work in Section 5. The closely related works are detailed in
Section 6, followed by the summarization in Section 7.
2

2. Motivation

As argued by Chen et al. [19], developing the GUI of an app involves
two separate activities: (1) Design of the GUI and (2) Implementation of
the GUI. The former activity is often done by professional designers as
creating an intuitive and pleasant user interface is crucial for an app’s
success in the highly competitive market. The latter usually involves
the implementation of the GUI interface itself e.g. GUI widgets details,
layout, constraints, and handling of user interactions such as what
happens when a button is clicked. State-of-the-art approaches that
have attempted to generate GUI interfaces automatically [19] have
proposed a neural machine translator to translate GUI design images
to GUI skeletons. They have not attempted to help developers quickly
implement user interactions code for the GUI components in the user
interfaces.

Listing 1: Examples of API usages in the method (Node 2 in Fig. 1)
reached by the click event. It is worth mentioning that both Android
APIs and third-party library APIs are used in this method.
1 //Node 2
2 TelephonyManager telephonyManager = (

TelephonyManager) this.la.
getSystemService(" phone ");

3 String str = telephonyManager.
getNetworkCountryIso().toUpperCase();

4 JSONObject jSONObject = new JSONObject();
5 jSONObject.put(" isoccode " , str);
6 new b(..., jSONObject.toString(), ...);

Consider Fig. 1 as an example. This is a typical GUI page extracted
from an Android app com.himalayawellness.hi malayakonnect. As high-
lighted, this GUI page contains various GUI components referred to as
icons through this paper. Each of these icon GUI components must
take user inputs, such as a click or other interaction, and respond
accordingly. For example, when users click the Profile icon (top left),
a new page will be switched to. This should allow users to configure
their profile data for the app. Such behavior changes driven by user
inputs are usually done by so-called callback methods. Ideally, each
icon should be associated with at least one callback method. The
implementations of these callback methods are often quite complicated,

Information and Software Technology 138 (2021) 106619Y. Zhao et al.
Fig. 2. The architecture of Icon2Code. Each icon involved in this work includes an icon image file and its description text given by app developers.
Fig. 3. The working process of the first module DCM. Each icon involved in this work includes an icon image file and its description text given by app developers.
1

involving various method calls accessing multiple Android APIs and
possibly third-party libraries. As such an example, let us consider the
simplified code snippet, shown in Listing 1, extracted from one of the
methods (i.e., node 2) in the call chain triggered by the onClick callback
method (i.e., once the icon is clicked), this single method is involved in
at least three APIs including both Android and third-party library APIs.
A single callback can access many such methods. Furthermore, a single
GUI page can contain dozens of icons, i.e., callback methods, making it
even harder to correctly implement and debug. The event-driven nature
of such user interfaces is well known to be challenging to code [20,21].
However, to the best of our knowledge, no existing approaches help
developers implement those complicated callback methods associated
with Android GUI icons.

3. Icon2Code

Fig. 2 presents an overview of our Icon2Code prototype tool. Its
three key modules are (1) Database Construction Module (DCM), (2)
Similarity Calculation Module (SCM), and (3) API Recommendation
Module (ARM).

3.1. DCM: Database Construction Module

The key objective of this work is to recommend code implementa-
tions for GUI icons. We achieve this purpose by learning from the code
implementations of existing apps that have used similar icons in their
GUIs. To this end, the first module of Icon2Code aims to pre-analyze
a broad set of Android apps to construct a database mapping icon to
its code implementation, i.e. Android code, JDK, and Android APIs, as
well as third-party library APIs (i.e., user-defined APIs or methods are
ignored). Fig. 3 shows the working process of this module.

3.1.1. Preprocessing
The first step preprocesses Android APKs to extract useful infor-

mation (such as the icons) to prepare for further analysis. Android
application package (APK) is the file format used to distribute and
install applications on Android. In APKs there are two primary forms
of icons: the vector icon defined by an XML file, and the image icon
provided as images files (such as PNG files). Since the former does
not directly come as images, we skip this form in this work and only
consider the latter. When disassembling Android APKs, we also parse
the manifest file to extract the targeted SDK versions, by extracting the
values of minSdkVersion and targetSdkVersion). This information will be
used when recommending APIs for Android apps under development,
i.e., the recommended APIs should align with the targeted SDK versions
of the target app.
3

Table 1
A set of attributes responsible for binding icons to GUI components.

Attribute Explanation

android:src Set a drawable as the content of the view (e.g.,
ImageView).

android:background Set a drawable as the background of the view.
android:drawableRight Set a drawable to the right of the text.
android:drawableTop Set a drawable on top of the text.
android:drawableLeft Set a drawable to the left of the text.
android:drawableBottom Set a drawable below the text.
android:drawableEnd Set a drawable at the end of the text.
android:drawableStart Set a drawable at the start of the text.

Listing 2: Examples of using XML attributes to bind icons with GUI
components.

1 //Example 1: ImageView , android:src
2 <ImageView android:src= " @drawable/

next_btn "
3 android:id= " @+id/nextBtn "
4 android:contentDescription= " @string/

next_button_content_desc "
5 android:onClick= " onClick " />
6
7 //Example 2: Button, android:background
8 <Button android:background= " @drawable/

button_cancel "
9 android:id= " @+id/cancel_btn "
0 android:text= " @string/cancel " />

3.1.2. Code analysis
This step statically analyzes program code in Android APKs to

establish a mapping from icon-bound GUI components and their corre-
sponding callback methods that respond to user events. To achieve this,
we analyze how icons are bound to GUI components on an app UI page.
We observe that icons are generally bound through XML attributes
in the apps’ layout configuration files. For example, the source of
an ImageView (i.e., android:src), the background image of a Button
(i.e., android:back-ground). Listing 2 shows two such examples on lines
2 and 8. Table 1 summarizes the list of attributes we have considered
in this work, and this list has already been leveraged by other Android
analysis techniques [22].

Information and Software Technology 138 (2021) 106619Y. Zhao et al.

1
1
1

p
e
t
R
a
i
f
o
e
O
a
a
t
r
𝐿

t
m
i
u
t
𝑏
f
s
0
b
𝑞
i

𝐿

𝑆

p
r

𝑆

Listing 3: An example of dynamically defining an icon’s event handler
(i.e., callback method) through program code.
1 public class MusicWallpaper extends

Activity implements View.
OnClickListener {

2 public void onCreate(Bundle bundle) {
3 setContentView(R.layout.layoutlagu);
4 ImageView v = (ImageView) findViewById(

R.id.nextBtn);
5 //Binding callback method to the icon
6 v.setOnClickListener(this);
7 }
8 @Override
9 public void onClick(View view) {
0 //This is the callback method
1 ...
2 }}

After locating GUI components, this step’s second task is to infer
their associated callback methods. As shown in Listing 3, it is non-
trivial to achieve this, as callback methods can be associated with
GUI components in two different ways. Like the bindings between GUI
components and icon files, callback methods can be specified through
XML attributes. Listing 2 demonstrates such an example. The attribute
android:onClick (line 5) specifies the callback method (also here named
as onClick) that is triggered if the image view is clicked. This type
of binding can be easily resolved by parsing the layout configuration
files. On the other hand, instead of statically defining the callback
methods, Android app developers can make the binding dynamically
in program code. Using the same onClick callback method, instead of
using the XML attribute (line 5 in Listing 2), developers can leverage
code as shown in Listing 3 to achieve the same purpose. This type
of binding is much more challenging to identify. Fortunately in most
cases the callback methods are added following the creation of a GUI
component (e.g., findViewById() at line 4). By statically connecting
those statements, one can eventually make a mapping from icons to
their dynamically defined callback methods.

3.1.3. Call graph construction
Based on the mapping from icons to callback methods, we then har-

vest the set of APIs accessed by the aforementioned callback methods
and consequently build a mapping from icons to their corresponding
set of APIs, called when the icons receive user inputs such as being
clicked. Unfortunately, as shown by our motivating example, it is not
straightforward to achieve this. A given callback method may access a
set of other methods, and each can invoke a set of APIs. We resort to
static code analysis to construct call graphs to ease the extraction of
APIs. For each callback method that we consider as an entry point, we
construct a call graph for it with nodes representing methods and edges
representing method invocations.

3.1.4. Database construction
For each icon identified previously, Icon2Code traverses its call

graph and extracts all Android and third-party APIs accessed by meth-
ods in the graph. It then puts this mapping of icon to its associated
APIs into a database. We consider this to be the ground truth to
support learning of API recommendations. Ideally, the more apps con-
sidered for training, the more comprehensive the database will be,
and subsequently, the more reliable the API recommendation approach
could be. Additionally, Icon2Code further records completed API usage
examples, like the code snippet shown in Listing 1, into the database.
This allows Icon2Code to recommend further API usage examples. We
believe this will be useful and helpful for developers to master the
recommended APIs more quickly. As noted previously, building event-
driven interfaces is challenging and this helps them to more easily reuse
4

appropriate icon-related code, especially for complex screens.
3.2. SCM: Similarity Calculation Module

Given an icon as input, SCM will locate similar icons from the pre-
built icon → APIs database. Given an icon and a similarity threshold,
the pre-trained database may return thousands of similar icons. We
introduce a configurable parameter 𝑚 to control the number of most
similar icons for analysis.

Since icons in Android apps can be associated with alternative text
describing the icon’s purpose, such text is also leveraged to identify
similar icons. We have identified three main sources that provide
alternative text to icon-bound GUI components: (1) S1: The icon’s
reference name (e.g., through android:src), which often describes the
function of the icon; (2) S2: The id name of the view (e.g., through
android:id) where the icon bound to, which often describes the function
of the view hosting the icon; and (3) S3: The alternative text defined
via android:contentDescription or android:text XML attributes, designed
to describe the function of the view. All three alternative texts are sup-
posed to specify the purpose of the view and should be similar to some
extent. Take Listing 2 as an example — alternative texts {S1, S2, S3}
of the two examples are {next_btn, nextBtn, next_button_content_desc},
{button_cancel, cancel_btn, cancel}. These are indeed similar to each
other in a set of alternative texts and align with the purpose of the view
and icon. In addition to a direct comparison between icon images, we
also use alternate text similarity to find the top-𝑚 most similar icons.

Image similarity calculation. We rely on straightforward ap-
roaches to measure the similarity of icons. Such approaches, although
asy to implement, may not be reliable in practice. We introduce
hree algorithms to calculate similarities of images, Oriented FAST and
otated BRIEF (ORB) algorithm [23], Locality Sensitive Hashing (LSH)
lgorithm [24], and a traditional Histogram algorithm [25]. Given two
mages 𝑝 and 𝑞, their similarity is calculated by Formula (1), where the
usion similarity threshold is defined as 0.85. If the maximum value
f the similarity calculated by the three algorithms is greater than or
qual to 0.85, the maximum value will be taken as the final similarity.
therwise, the minimum value of the similarity calculated by the three
lgorithms will be considered as the ultimate similarity of the fusion
lgorithm. Through this hybrid image similarity calculation method,
he random error caused by a single method can be significantly
educed.
𝑒𝑡 𝑀𝑎𝑥𝑠 = 𝑚𝑎𝑥(𝑂𝑅𝐵(𝑝, 𝑞), 𝐿𝑆𝐻(𝑝, 𝑞),𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑝, 𝑞)),
𝐿𝑒𝑡 𝑀𝑖𝑛𝑠 = 𝑚𝑖𝑛(𝑂𝑅𝐵(𝑝, 𝑞), 𝐿𝑆𝐻(𝑝, 𝑞),𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑝, 𝑞)),

𝑆𝑖𝑚𝑖𝑚𝑎𝑔𝑒(𝑝, 𝑞) =
{

𝑀𝑎𝑥𝑠, 𝑀𝑎𝑥𝑠 ≥ 0.85
𝑀𝑖𝑛𝑠, 𝑀𝑎𝑥𝑠 < 0.85

(1)

Text similarity calculation. To ascertain the similarity of two
ext strings, edit distance is a widely-used method that computes the
inimum number of edit operations required to transform one text

nto the other [26]. Levenshtein distance is such a type of commonly
sed edit distance [27], upon which the semantic similarity of two
exts can be represented using the Levenshtein ratio [28]. Given 𝑎 and

as two texts, their Levenshtein ratio score can hence be calculated
ollowing Formula (2). A perfect match will achieve a Levenshtein
core of 1, while an entirely dissimilar case will result in a score of
. Given two icons 𝑝 and 𝑞, their alternate text similarity is calculated
y Formula (3), where 𝑝′ and 𝑞′ are the alternative text of 𝑝 and
, and 𝑤1, 𝑤2, 𝑤3 are the weights of each type of alternative text,
.e., 𝑆1, 𝑆2, 𝑆3, separately.

𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑎, 𝑏) = 1 −
𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎, 𝑏)

|𝑎| + |𝑏|
(2)

𝑖𝑚𝑡𝑒𝑥𝑡(𝑝′, 𝑞′) = 𝑤1 × 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑆1(𝑝′, 𝑞′) +
𝑤2 × 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑆2(𝑝′, 𝑞′) +
𝑤3 × 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑆3(𝑝′, 𝑞′)

(3)

We aggregate these two similarity calculation algorithms to com-
ute the overall similarity of two icons via Formula (4), where 𝛼 and 𝛽
epresent the weights of 𝑆𝑖𝑚𝑖𝑚𝑎𝑔𝑒 and 𝑆𝑖𝑚𝑡𝑒𝑥𝑡, respectively.

𝑖𝑚(𝑝, 𝑞) = 𝛼 × 𝑆𝑖𝑚𝑖𝑚𝑎𝑔𝑒(𝑝, 𝑞) + 𝛽 × 𝑆𝑖𝑚𝑡𝑒𝑥𝑡(𝑝′, 𝑞′) (4)

Information and Software Technology 138 (2021) 106619Y. Zhao et al.

𝑟

J
a
J
m
G
f
t
s

4

i

4

t
e
m
t
s
g
c
c
A
d

i
a
o

Table 2
An example of the encoding matrix.

𝑎𝑝𝑖1 𝑎𝑝𝑖2 ⋯ 𝑎𝑝𝑖𝑘
𝑖1 1 0 1 0
𝑖2 1 1 0 1
⋯ 1 1 1 0
𝑖𝑚 0 1 1 0

𝑖𝑒𝑑𝑖𝑡 −1 −1 −1 −1

3.3. ARM: API recommendation module

ARM learns from a set of code implementations to recommend APIs
for the input icon that is under development, i.e. developers want to
implement its corresponding callback method(s). Icon2Code leverages
collaborative filtering to recommend API usages. Schafer et al. [29]
present collaborative filtering (CF) as a process of filtering or evaluating
items through the opinions of other people. The approach has often
been used to recommend items for users to purchase based on past
shopping records or the records of other users with similar purchasing
behaviors. In Icon2Code, an icon plays the role of a user, while each API
plays the role of an item. The goal of ARM is hence to recommend users
(icons) a list of items (APIs) to purchase (to access).

Based on the 𝑚 most similar icons returned by SCM module,
Icon2Code first determines the number of APIs (𝑘) accessed by the
associated callback methods of the selected icons and models them
into a (𝑚 + 1) ∗ 𝑘 matrix. Table 2 illustrates such an example. Icons
– selected ones 𝑖1 → 𝑖𝑚 plus the one under development 𝑖𝑒𝑑𝑖𝑡 – are
represented as rows while APIs are represented as columns. For the
selected 𝑚 icons, each of their cells in the matrix is set to either true
(1) or false (0), representing whether the icon-related callback methods
have accessed the corresponding API or not. For example, cell (𝑖2, 𝑎𝑝𝑖𝑘)
is set to be 1, indicating that callbacks of icon 𝑖2 has accessed 𝑎𝑝𝑖𝑘. For
the icon under development (i.e., 𝑖𝑒𝑑𝑖𝑡 in the last row), all of its cells
will be set to unknown (−1). The goal of this module is hence switched
to predict possible values for those unknown cells. The cells received
higher values – or the corresponding APIs – will then be recommended
for app developers to complete the development of the icon-associated
callback method.

The probability of recommending a given API 𝑎𝑝𝑖 to 𝑖𝑒𝑑𝑖𝑡 can be
calculated via Formula (5) [29], where 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖𝑒𝑑𝑖𝑡) is the set of
the 𝑚 most similar icons, 𝑠𝑖𝑚(𝑖𝑒𝑑𝑖𝑡, 𝑖) is defined by Formula (4), and
̄𝑖𝑒𝑑𝑖𝑡 and 𝑟𝑖 are the mean ratings of 𝑖𝑒𝑑𝑖𝑡 and 𝑖, respectively. In our

implementation, 𝑟𝑖 and 𝑟𝑖,𝑎𝑝𝑖 are obtained from the encoding matrix. For
example, for the encoding matrix shown in Table 2, we could calculate
𝑟𝑖 by measuring the average rating of the cells in the row corresponding
to 𝑖. For ̄𝑟𝑖𝑒𝑑𝑖𝑡 , we set its value to 0.8 following the general practice of
the state-of-the-art [30].

𝑝𝑖𝑒𝑑𝑖𝑡 ,𝑎𝑝𝑖 = ̄𝑟𝑖𝑒𝑑𝑖𝑡 +

∑

𝑖∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖𝑒𝑑𝑖𝑡)(𝑟𝑖,𝑎𝑝𝑖 − 𝑟𝑖) ⋅ 𝑠𝑖𝑚(𝑖𝑒𝑑𝑖𝑡, 𝑖)
∑

𝑖∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖𝑒𝑑𝑖𝑡) 𝑠𝑖𝑚(𝑖𝑒𝑑𝑖𝑡, 𝑖)
(5)

The output of Icon2Code will be a list of Android APIs that are
ranked based on the scores returned by Formula (5). For instance,
the API lists recommended for the examples given in Listing 2 are
displayed in Listing 4. Icon2Code will only return top-𝑁 APIs, where
𝑁 is another user-configurable parameter. As well as the top-N APIs
recommended for the active callback method associated with an icon,
Icon2Code will also provide API usage samples that are gathered from
the actual implementations of the selected similar icons.

Listing 4: The recommended API list for the examples given in
Listing 2, where N = 5.

// Example 1
<View: int getId()>
<MediaPlayer: boolean isPlaying()>
<MediaPlayer: void pause()>
5

<MediaPlayer: void setLooping(...)>
Fig. 4. The distribution of the number of APIs accessed by icon-bound GUI
components.

<MediaPlayer: void start()>

// Example 2
<Dialog: void <init>()>
<Dialog: void setCancelable(...)>
<Dialog: void setContentView(...)>
<Dialog: Window getWindow()>
<Window: boolean requestFeature(...)>

Implementation. Our prototype tool Icon2Code is implemented in
ava and on top of several well-known existing tools. JADX1 is lever-
ged to disassemble Android APKs and convert the APK bytecode into
ava source code. Gator [31], specifically its GUIHierarchyPrinterClient
odule, is used to infer callback methods for pre-identified icon-bound
UI components. Icon2Code leverages Soot [32] to construct call graphs

or all the event handler callback methods and extract APIs invoked by
hese callback methods, as well as code snippets to be used as examples
howing how APIs are accessed in practice.

. Evaluation

We evaluate the effectiveness of Icon2Code by answering the follow-
ng three research questions:

• RQ1: How accurate is Icon2Code in recommending API calling
code for GUI components of Android apps under development?

• RQ2: Do the number of the most similar icons and their cor-
responding code implementations selected for learning impact
Icon2Code’s performance?

• RQ3: To what extent do different weights of text/image similari-
ties impact the performance of Icon2Code?

• RQ4: Will the performance of Icon2Code be impacted by the
number of APIs accessed by icons selected for training?

.1. Dataset

We need a quality dataset containing icons mapped to a set of APIs
hat are accessed after user interaction with the icons to support our
xperiments. Unfortunately, no such dataset has yet been released or
ade available and we had to build one from scratch. We leveraged

he first DCM module of Icon2Code and applied it to a set of randomly
elected Google Play apps, collected from AndroZoo [33]. DCM scans a
iven Android app to check if image files are provided. If so, it leverages
ode analysis to construct mappings from icons to their associated
allback methods. If there are icon–callback pairs identified, we extract
PIs accessed by those callback methods and record the results into the
atabase if at least one API is collected.

We ran this process and built a benchmark database with 47,827
cons from approximately 5000 apps. Each of the icons in this database
ccesses at least one API. Fig. 4 presents the distribution of the number
f API calls per icon. The median and average numbers are 5 and

1 https://github.com/skylot/jadx.

https://github.com/skylot/jadx

Information and Software Technology 138 (2021) 106619Y. Zhao et al.
Fig. 5. Experimental results of Icon2Code in recommending API usages to icon-bound GUI components.
Fig. 6. A concrete example of recommending APIs for a target icon extracted from app com.zjw.wearheart.
10.5, respectively. This suggests that implementing each icon-related
callback method is likely to be complicated, involving more than five
API calls in over half of the cases. In an extreme case, the number of
called APIs is as high as 30.

4.2. Evaluation metrics

Given an icon or GUI component and its callback method under
development, the objective of Icon2Code is to recommend a ranked list
of APIs (e.g., 𝑁 APIs) to help developers complete the implementation
of the callback function. To assist in evaluating whether Icon2Code
satisfies this purpose, we leverage the commonly used success rate
and hit rate metrics to assess the usefulness and effectiveness of our
approach. These two metrics, either applied to evaluate result@1 or
result@N, have been recurrently leveraged by our fellow researchers
to assess other code recommendation approaches [30,34].

The success rate metric has been frequently leveraged to eval-
uate the effectiveness of similar recommendation systems. For ex-
ample, Nguyen et al. [30] leveraged it to evaluate performance of
their method-to-API usage recommendation system. Given a set of
icons 𝐼𝐶𝑂𝑁 under testing, for the callback functions under develop-
ment of each icon 𝑖𝑐𝑜𝑛, Icon2Code generates 𝑁 recommended APIs,
i.e., 𝑅𝑁 (𝑖𝑐𝑜𝑛), to fulfill them. We consider that a recommendation is
successful for icon 𝑖𝑐𝑜𝑛 as long as at least one out of the 𝑁 APIs are in
the Ground-Truth set 𝐺𝑇 (𝑖𝑐𝑜𝑛). The success rate for 𝐼𝐶𝑂𝑁 can then be
calculated via Formula (6), where 𝐺𝑇 (𝑖𝑐𝑜𝑛) stands for the set of APIs
actually accessed by the callback functions of 𝑖𝑐𝑜𝑛, and 𝑚𝑎𝑡𝑐ℎ𝑁 (𝑖𝑐𝑜𝑛) is
defined as the intersection of the recommended 𝑁 APIs and 𝐺𝑇 (𝑖𝑐𝑜𝑛),
i.e., 𝑚𝑎𝑡𝑐ℎ𝑁 (𝑖𝑐𝑜𝑛) = 𝑅𝑁 (𝑖𝑐𝑜𝑛) ∩ 𝐺𝑇 (𝑖𝑐𝑜𝑛).

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒@𝑁 =
𝑐𝑜𝑢𝑛𝑡𝑖𝑐𝑜𝑛∈𝐼𝐶𝑂𝑁 (|𝑚𝑎𝑡𝑐ℎ𝑁 (𝑖𝑐𝑜𝑛)| > 0)

|𝐼𝐶𝑂𝑁|

× 100% (6)

The hit rate is another metric we leverage in this work to sup-
plement the success rate metric to describe the ratio of the top 𝑁
recommended APIs matching 𝐺𝑇 (𝑖𝑐𝑜𝑛):

ℎ𝑖𝑡 𝑟𝑎𝑡𝑒@𝑁 =
|𝑚𝑎𝑡𝑐ℎ𝑁 (𝑖𝑐𝑜𝑛)|

𝑁
× 100% (7)
6

4.3. RQ1: Performance of Icon2Code

We aim to validate the performance and effectiveness of Icon2Code.
Based on default parameters of Icon2Code, i.e., twenty neighbors (𝑚 =
20) and image only similarity calculation (𝛼 = 1, 𝛽 = 0), we perform
experiments with a standard 10-fold cross-validation procedure. We use
the dataset based on collected 47,827 icons and their corresponding
set of APIs accessed by associated callback methods. We randomly
divide our dataset into ten sets of 4,782 icons in each set. Nine sets
are used as training set and the remaining one for testing. This process
is then repeated ten times to confirm that each of the ten sets has been
treated as a test set once. We finally apply the overall results of these
ten validations to characterize the performance of Icon2Code in each
experimental setting. In order to avoid the influence of icons from the
same app on the experimental results, for all experiments in this work
we narrow the selection range of neighbor candidates for each test icon
to those gathered from different apps.

Fig. 5 shows our experimental results, including success rate as
well as hit rate, concerning a different number of recommended APIs
(i.e., success rate@N and hit rate@N, where 𝑁 ∈ [1, 20]). Expectedly,
the more number of APIs considered for recommendation, the higher
the success rate of Icon2Code will be. When only one API is taken into
account (i.e., success rate@1), Icon2Code can already achieve over 50%
of the success rate. If we increase the number to 20, the success rate can
reach over 94%, showing high performance to be applicable in practice.

Regarding the hit rate, as the number of considered APIs increasing,
it first slightly declines and then tends to become stable. This suggests
that (1) the top-recommended APIs have a high possibility to be the
ones needed by the developers, and (2) more APIs will hit the ground
truth if more APIs considered. This experimental result shows that our
approach is useful in recommending APIs for assisting developers in
implementing the callbacks of icon-bound GUI components.

Case study. We provide a concrete case study to demonstrate the
effectiveness of Icon2Code. Fig. 6 presents a typical case, where the icon
under development is used to rewind to the past during date selection

Information and Software Technology 138 (2021) 106619Y. Zhao et al.

(

i
(
t
l
c
N

Fig. 7. The success rates obtained by altering the number of similar methods
i.e., parameter 𝑚).

n a calendar component. The top left box shows the 20 neighbors
based on image similarity) returned from the training database while
he top right box shows the 20 neighbors obtained through text simi-
arity. Due to our current simplistic implementation of image similarity
alculation, not all neighbor icons are closely similar to the target icon.
evertheless, the top-ranked icons such as (1)(2)(3) are very similar to

the targeted one, and all of them are also relevant to date manipulation.
Subsequently, these similar icons will dominate the selection process
and allow Icon2Code to achieve a hit rate at 95%, i.e., by learning
from the implementations of these 20 neighbors, Icon2Code is able to
recommend 19 (out of 20) APIs that hit the ground truth list.

Notice that the un-hit API is related to the implementation of
media players. This API is recommended because several icons in the
neighbor list (i.e., (4)(10)(11)) are related to managing the media player.
This result indicates that the neighbor list’s quality is essential to the
effectiveness of Icon2Code in recommending API usage code. This was a
key motivation for adding a text-similarity strategy into Icon2Code (as
described in Section 3.2. A better image similarity calculation strategy
could also improve the performance of Icon2Code.

4.4. RQ2: Impact of the selected number of similar icons

In our second research question, we explore the impact of altering
the number of similar icons (i.e., the parameter 𝑚) on the performance
of Icon2Code. To this end, we design multiple sets of experiments
considering different numbers of neighbors and perform them with
default settings for other parameters e.g. when only image similarity
is considered.

Fig. 7 shows experimental results with respect to different param-
eters, i.e., 𝑚 ∈ {5, 10, 15, 20, 25, 30} (𝑚 = 5 means that Icon2Code will
only build the encoding matrix with 5 similar icons). Similar to our
7

previous finding, as the number of APIs considered for recommendation
𝑁 increases, no matter which 𝑚 is considered, the success rate also
increases. By comparing increasing trends, 𝑚 = 5 achieves the worst
performance, followed by 𝑚 = 10, which achieves slightly higher
performance but still clearly less than all the other settings. Interest-
ingly, when increasing the value of 𝑚 to 15, the performance starts to
converge, i.e., the performance does not significantly change any more
while increasing the number of similar images 𝑚. The hit rate follows
a similar pattern, as shown in Fig. 8. By increasing the value of 𝑚, the
hit rates slightly increase as well and start to stabilize when 𝑚 reaches
15 or 20.

These results show that the number of selected icons indeed impacts
the performance of Icon2Code when it is small. When the number
reaches a certain threshold, the impact tends to be marginal. Further-
more, they also show that the default value (𝑚 = 20) is a suitable
number for Icon2Code to recommend API usages for icon-bound GUI
components.

4.5. RQ3: Impact of similarity calculation methods

We now explore the impact of the similarity calculation methods
on the performance of Icon2Code, i.e., the value of 𝛼 and 𝛽 discussed
in Section. 3.2. By default, the weights for image similarity and text
similarity (𝛼, 𝛽) are set to be (1,0).This means that only image files are
required for the calculation of similarity i.e., the text is optional. To
evaluate the advantages of including text similarities, we now compare
this default setting with another four settings formed by altering the
weights, i.e., (0.8, 0.2), (0.5, 0.5), (0.2, 0.8), and (0, 1). Weights (0, 1)
stand for the cases where only text similarity is considered for locating
similar icons in the training set. All the other parameters of Icon2Code
are kept the same to ensure a fair comparison.

Fig. 10 illustrates these experimental results. Surprisingly, the text-
only setting achieves the best performance, and yet all the alterna-
tive experimental settings (involving text similarities) outperform (or
achieve comparable results compared to) the default setting when only
image similarities are considered. Similarly, concerning the hit rate, as
demonstrated in Fig. 9, experimental settings involving text similarities
only achieves a better hit rates than that of image similarities alone.
The performance differences, nonetheless, for both success rate and hit
rate are quite marginal.

This shows that developers can also resort to alternate text to
help find similar event handler callback methods. In the absence of
icon images during design, developers could potentially leverage our
approach to select suitable icons. This result suggests that the similarity
calculation module is critical to the success of Icon2Code. With a better
image (icon) similarity calculation method, Icon2Code could likely
achieve better performance. Since this is not our main contribution to
this work, we leave it for future work.
Fig. 8. The hit rates obtained by altering the number of similar methods.
Fig. 9. The hit rates obtained by adjusting the similarity calculation strategies.

Information and Software Technology 138 (2021) 106619Y. Zhao et al.

i
d
T
v
a
p
h
F
c
c

4

I
s
t
m
a
t
F
w
r
e

p
c
t
a
t
t

5
f
i
e
t
s
t
f

5

s
s

o
p

5

s
3
t
l
v
s

a
i
a
e
W
m
o
i
y
m
r
a
d
t

Fig. 10. The success rates obtained by adjusting the similarity calculation strategies
(i.e., parameters 𝛼 and 𝛽).

Case Study Revisited. We revisit the concrete example illustrated
n Fig. 6. Interestingly, the 20 icon neighbors returned by text similarity
o share some common icons with that obtained via image similarity.
hey also present several differences. The experiment results achieved
ia text similarity are as good as, or even slightly better than, the results
chieved via image similarity. This shows that alternative text also
rovides useful information to locate similar icons so as to learn event
andler code implementations for their associated GUI components.
uture work should focus not only on improving the image similarity
alculation methods but also on finding a smart way to combine the
apabilities brought by both image and text similarities.

.6. RQ4: Performance on different groups of training icons

Our last research question concerns the performance of the
con2Code tool over different groups of training icons. In this work, we
plit the original training dataset into three groups: (1) All the icons
hat have no more than five APIs accessed by their associated callback
ethods, (2) All the icons that have over five but no more than 10 APIs

ccessed by their associated callback methods, and (3) All the icons
hat have over 10 APIs accessed by their associated callback methods.
ollowing the same experimental setting, as discussed in Section 4.3,
e re-launch Icon2Code on the aforementioned three training groups,

espectively. Again, ten-fold cross-validation is leveraged in all three
xperiments.

Fig. 11 presents the experimental results. Interestingly, when com-
aring the results across the three experiments, the success rate in-
reases from the first to the second groups and from the second to the
hird groups. For example, the success rate@5 of the three experiments
re 74.56%, 81.6%, and 82.29%, respectively. This evidence suggests
hat increasing the number of APIs accessed by icons selected for
raining could improve the performance of Icon2Code. Furthermore,

when looking at each of the experiments alone, Icon2Code achieves over
0% of success rate when only the first recommended item is concerned
or all the three experiments. When the number of recommended APIs
ncreases, the success rate also increases. Considering the hit rate, as
xpected, regardless of the groups, it will first slightly decrease when
he number of API increases and then stabilizes. These experimental re-
ults are all in line with our previous experimental findings, confirming
he effectiveness of Icon2Code in recommending API implementations
or GUI components.

. Discussion

We now perform sensitivity analysis for the threshold (i.e., 0.85)
et in image similarity and the three weights used in calculating text
8

imilarities to examine if they are suitable for our work. i
Table 3
Experimental results obtained by varying the threshold in image similarity.

Criteria 0.8 0.85 0.9 0.95

Top-1 60.46% 60.07% 60.15% 59.88%
Top-5 82.23% 81.21% 80.27% 80.56%
Top-10 89.57% 89.37% 89.57% 90.01%
Top-15 91.48% 92.14% 92.77% 92.8%
Top-20 93.58% 94.04% 94.46% 94.73%

Threshold in image similarity. In order to perform sensitivity
analysis on the threshold in image similarity calculation, based on the
parameters of twenty neighbors (𝑚 = 20) and image only similarity
calculation (𝛼 = 1, 𝛽 = 0), we perform experiments on the same
dataset as Section 4, where standard 10-fold cross-validation procedure
is taken into account. We vary the threshold from 0.85 to 0.95 with an
interval at 0.05. Table 3 summarizes the experimental results. It can
be observed from the results that increasing the similarity threshold
may not necessarily yield better results. Indeed, when threshold 0.85 is
considered, the performance at Top-1 and Top-5 is even slightly lower
than the results achieved by setting the threshold at 0.85. Nevertheless,
overall, the adjustments of the similarity threshold have little impact on
the experimental results. This evidence indicates that our approach is
not sensitive to the image similarity threshold. We hypothesis that this
insensitivity could be related to the fact that we have only leveraged
traditional image similarity calculation algorithms, which may not be
capable of characterizing the images’ semantics. As for our future
work towards verifying this hypothesis, we will resort to deep learning
models to measure images’ similarities.

The three weights in text similarity. Similar to the sensitivity
analysis for threshold in image similarity calculation, we further con-
duct experiments to evaluate the sensitivities of the weights set to
calculate text similarities. In this setting, the parameters are adjusted
to twenty neighbors (𝑚 = 20) and text only similarity calculation
(𝛼 = 0, 𝛽 = 1). We perform 7 sets of experiments, using different values
of (𝑤1, 𝑤2, 𝑤3) in Eq. (3), and the results are shown in Table 4. The
experimental results show that there is no clear winner among the three
alternative texts. Therefore, we set the three alternative texts the same
weight to make Icon2Code more versatile, aiming to avoid the impact
f corner cases such as one type of alternative text in some apps not
rovided by app developers.

.1. Threats to validity

Threats to construct validity. Icon2Code is implemented based on
everal static analysis frameworks, including Soot [35] and Gator [31,
6,37]. Their reliability defects hence could propagate to Icon2Code,
hus introduce threats to the effectiveness of our approach. Nonethe-
ess, the above frameworks have been demonstrated to be useful by
arious state-of-the-art works [38–41] and hence the potential threats
hould be limited.
Threats to internal validity. The main internal threat is that we

pply simulated experimental settings for evaluation rather than study-
ng real-world recommendation scenarios. Following the state-of-the-
rt [30], we mitigate this threat by forming a large-scale dataset and
mploying 10-fold cross-validation to reduce the impact of contingency.
e used commonly agreed heuristic evaluation metrics for our experi-
ents with Icon2Code. These may not indicate the actual performance

f Icon2Code in practice, and hence user studies are needed to evaluate
ts effectiveness in real-world code recommendation. Icon2Code cannot
et handle the situation where several icons share the same callback
ethods. Furthermore, in some rare cases, the harvested images do not

epresent the purpose of the GUI components e.g., icons are provided
s background. This may introduce unrelated cases to our training
atabase so as to impact the final recommendation results. We plan
o invent a means to filter out such irrelevant icons and thereby to

mprove the performance of our approach.

Information and Software Technology 138 (2021) 106619Y. Zhao et al.

r
n
W
r
y
p
w
c
l
s

5

s
i
n
c
e
a
c
t
W
o
o
e
i
s
e
t

Fig. 11. Experimental results of Icon2Code in recommending API usages to icon-bound GUI components with different numbers of accessed APIs.
Table 4
Experimental results obtained by varying the three weights in text similarity.

Criteria (0.33,0.33,0.33) (1,0,0) (0,1,0) (0,0,1) (0.5,0.5,0) (0.5,0,0.5) (0,0.5,0.5)

Top-1 62.89% 61.49% 64.9% 58.59% 62.93% 61.55% 65.1%
Top-5 81.77% 79.88% 83.17% 75.05% 81.83% 79.82% 83.2%
Top-10 89.95% 88.45% 88.54% 88.9% 90% 88.23% 88.69%
Top-15 93.49% 93.24% 93.42% 93.93% 93.62% 93.19% 93.53%
Top-20 94.85% 95.24% 95.02% 96% 95.04% 95.14% 94.97%
Threats to external validity. A major external threat lies in the
andom selection of mobile apps for establishing our dataset. These may
ot generally represent all the available apps in the Android ecosystem.
e strived to mitigate this threat by randomly selecting real-world apps

eleased in the official Google Play store, and conducting further anal-
sis and screening to retain those that meet our needs. Additionally, at
resent, app obfuscation may be applied to some apps in our dataset
hich may confuse icon to event handler code mappings. We did not

onsider it in this work. Nevertheless, as we are primarily interested in
earning API usage, which would not be affected by simple obfuscation
trategies such as method renaming) [42].

.2. Limitations and future work

It is known that recommendation systems often suffer from the
o-called cold start problem. This concerns the issue of the system’s
nability to draw any inferences for users or items about which it has
ot yet collected sufficient information [43]. Potentially, our approach
ould also suffer from such a threat. To better understand to what
xtent our approach is impacted by the cold start problem, we conduct
n empirical investigation by varying the number of icons our approach
ould learn from the training dataset. We form our training set with
he following number of available icons: {50, 100, 500, 1000, 1500}.

e then re-run the experiments discussed in Section 4.3 with all the
ther parameters kept to their default values. Table 5 summarizes
ur experimental results. As expected, the success rate increases when
nlarging the size of the training dataset. When setting the number of
cons included for training at 1500, our recommendation approach’s
uccess rate can already exceed 80% at Top-5, 90% at Top-10, and
ven 95% if Top-20 is considered. This experimental result shows
9

hat the cold start problem indeed impacts the performance of our
Table 5
Experimental results obtained by varying the size of the training dataset.

Criteria 50 100 500 1000 1500

Top-1 64.44% 64.69% 66.91% 68.68% 69.5%
Top-5 83.02% 83.16% 83.19% 83.6% 83.62%
Top-10 90.41% 91.46% 91.52% 91.73% 92.81%
Top-15 94.75% 94.8% 95.48% 95.75% 96.06%
Top-20 95.24% 95.54% 95.23% 96.76% 96.9%

approach. However, such an impact could be significantly mitigated
if more training apps are prepared. To the best of our knowledge,
such a requirement is not difficult to achieve as it is relatively easy
to collect more Android apps. For example, the well-known AndroZoo
dataset [33] has collected over 10 million real-world Android apps
ready for adoption by our approach. In our future work, we plan to
enlarge our training set to provide more accurate API recommendations
for developers to implement the logic behind each icon.

We have not distinguished between Android APIs and third-party
library APIs when recommending API usages for icon-bound event
handler callback methods. Our approach could be leveraged to recom-
mend third-party libraries for implementing icons’ callback methods.
Third-party library APIs may provide enough information to infer the
actual libraries, and even the distinct versions of the libraries, to
some extent. Library recommendation has been a hot topic in the
software engineering community [34]. For example, He et al. [44]
have proposed an approach to predict diversified third-party libraries
for helping developers implement mobile apps. This approach could
be leveraged to supplement ours so as to predict the right third-party
libraries and code snippets to use to help in implementing mobile GUI
components.

Information and Software Technology 138 (2021) 106619Y. Zhao et al.
Apart from recommending API usage to icon-bound GUI compo-
nents, our approach could also be leveraged to recommend icons to
GUI designers. Given an alternative text describing the purpose of the
icon (not yet designed), the returned icon neighbors (samples) in the
second module of Icon2Code could be leveraged by designers to create
suitable icons.

Furthermore, we plan to work on an improved similarity calculation
module for Icon2Code, aiming to invent more effective approaches
to locate similar icons. At the moment, we have leveraged Leven-
shtein distance to calculate the text-similarity in this paper, which is
a commonly-used string metric for measuring the difference between
two sequences. As for future work, we consider introducing improved
algorithms such as deep learning networks to better calculate such
similarities. Additionally, for calculating the similarities of icon images,
we plan to also leverage state-of-the-art computer vision techniques to
better find the most suitable neighbors of the input icon so as to achieve
more relevant code implementation learning.

Some of the event handler callback methods, although rare, could
be bound to several GUI components. Developers often use conditional
judgments to define which specific code segments are related to which
icon. At the moment, this type of setting is agnostic by our approach
and which could hence lead to inaccurate results. It is also possible
that the categorizes of UI widgets may have some impacts on the
performance of our approach, e.g., our approach only works well on
certain types of buttons, or image views, etc. As for our future work,
we plan to take these cases into consideration when improving our
approach.

We intend to integrate our prototype implementation as a plugin
into Android Studio, the default IDE recommended for app developers.
We then want to recommend icon event handler API usage during the
development phase of given Android apps that require much coding
work for icon-bound GUI components. We want to carry out user
studies of Icon2Code in this context to determine if its event handler
code recommendations prove useful for large scale, complex Android
development projects.

Finally, to better evaluate the effectiveness of our approach, we
plan to conduct a large-scale user study involving carefully designed
tasks and representative user skills [30]. We also plan to improve the
usability of our approach to alleviate unnecessary noises introduced to
the user study approach.

6. Related work

We summarize critical related work from three aspects, i.e., GUI
component analysis of mobile apps, recommendations in Android de-
velopment, and collaborative filtering approaches applied in software
engineering.

6.1. GUI analysis in Android

To help developers better implement GUI components, several tools
have been developed [19,45,46] to assist the transition from UI design
images to GUI implementations. For example, Chen et al. [19] propose
a deep learning-based technique trained with the UI design and GUI
implementation knowledge learned from existing apps to convert UI
requirements into a hierarchy of GUI components. Unlike these works,
which focus on the code implementation of the UI design images,
Icon2Code aims to recommend API usages for Android GUI components’
event handlers i.e., their associated callback methods.

Rountev et al. [31] target static object reference analysis to model
GUI-associated Android objects, their flow through the application,
and their interactions with each other via the abstractions defined by
the Android platform. In our work, we go one step further to focus
on the specific code implementation of callbacks related to the GUI
10

components. We also leverage traditional recommendation algorithm
to provide developers with references and suggestions to help them
achieve rapid development.

Xiao et al. [41] present a framework that leverages program anal-
ysis techniques to associate icons and GUI widgets and classifies the
associated icons into eight sensitive categories for Android apps. Xi
et al. [47] propose DeepIntent, a framework that associates the icons
and contextual texts with GUI widgets’ program behaviors. It infers
the GUI widgets’ permission uses based on the program behaviors,
synthetically consolidating program analysis, and deep learning tech-
niques to identify intention-behavior disparities. Although the above
two works are related to the analysis of GUI components and program
behaviors, our work is different. Their work represents the program
behaviors through the permissions used by the mobile apps, while our
work focuses more on code level API invocations called by the callbacks
methods.

6.2. Recommendation in Android development

Researchers have devoted much effort in facilitating Android API
recommendations to support mobile app development. This is because
Android apps development relies extensively on API frameworks and
libraries. Some works attempt to provide relevant suggestions on using
third-party libraries [44,48,49]. Others center on delivering real-time
recommendations during the development, such as giving parameter
values as suggestions in similar programming scenarios [50], or provid-
ing Android APIs and their usage patterns for assisting in developers’
work [11,13,51].

Gu et al. [52] generate API usage sequences based on natural lan-
guage query through a deep learning-based approach for the purpose of
code search. Likewise, Jiang et al. [53] propose an approach leveraging
multi-aspect features to generate code snippets as recommendations,
such as text, topic, and the number of lines, etc. There is a module in
Icon2Code that utilizes a simple short text to locate similar neighbors
to facilitate subsequent recommendations. We believe the aforemen-
tioned approaches could supplement this module to enable Icon2Code
to achieve a higher performance.

Yuan et al. [18] initially concentrate on the demand of recommend-
ing event callbacks in Android application development and submit
an approach to support both functional APIs and the event callbacks
that need to be overridden. They extended this work by establishing a
large Android-specific API database indicating the associations among
diverse functionalities and APIs [12]. What is different from their work
to ours, aside from the GUI component mapping, is that callbacks in
our work are the objects that need to be fulfilled, that is, are playing
the role of users in the recommendation system, rather than items in
theirs.

6.3. Collaborative filtering in software engineering

Collaborative filtering techniques are broadly employed in software
engineering to support many different recommendation systems. Thung
et al. [54] integrate association rule mining and user-based collabora-
tive filtering and introduce a technique to recommend likely related
libraries to aid developers in exploit third-party libraries. Similarly, Yu
et al. [34] propose an approach that blends Latent Dirichlet Allocation
(LDA) and collaborative filtering to give suggestions about third-party
libraries for mobile apps. He et al. [44] propose an approach that
leverages Matrix Factorization, a classic collaborative filtering based
prediction approach, for recommending useful third-party libraries to
developers. These are for general app code usage, rather than for GUI
event handler code implementation as in our work.

In terms of applications at the code level, Nguyen et al. [30] present
a context-aware collaborative filtering based algorithm to recommend
Java method invocations. We focus on providing much more targeted
API and usage pattern recommendations for callbacks related to specific
GUI components.

Information and Software Technology 138 (2021) 106619Y. Zhao et al.
7. Summary

We have proposed a prototype tool Icon2Code to recommend API
calling code to assist Android app developers in implementing the call-
back functions of iconic GUI components. Icon2Code leverages icon im-
age files and their alternative text to locate similar icons that are closest
to the active icon under development. It then employs a collaborative
filtering algorithm with encoding matrix and rating algorithms to ob-
tain an output of recommended APIs to call in the event handler code,
as well as usage samples from existing apps. Our experimental results
using a new dataset of almost 50,000 icon event handler implementa-
tions have demonstrated that Icon2Code is effective in recommending
such event handler code API usage for Android developers.

CRediT authorship contribution statement

Yanjie Zhao: Conceptualization, Methodology, Software, Data cu-
ration. Li Li: Supervision, Conceptualization, Methodology, Writing
- review & editing. Xiaoyu Sun: Software, Data curation. Pei Liu:
Software, Data curation. John Grundy: Supervision, Writing - review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank the anonymous reviewers who
have provided insightful and constructive comments that have led to
substantial improvements in this manuscript. This work was partly
supported by the Australian Research Council (ARC) under a Laureate
Fellowship project FL190100035, a Discovery Early Career Researcher
Award (DECRA) project DE200100016, and a Discovery project
DP200100020.

References

[1] Amanda Short, Standing Out From The Crowd: Improving Your Mobile App
With Competitive Analysis, Smashing Magazine, 2017, URL: https://www.
smashingmagazine.com/2017/12/improving-mobile-app-competitive-analysis/.
[Online; accessed 20-July-2020].

[2] H. Cai, Z. Zhang, L. Li, X. Fu, A large-scale study of application incompatibilities
in android, in: The 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2019), 2019.

[3] L. Li, T.F. Bissyandé, H. Wang, J. Klein, CiD: Automating the detection of API-
related compatibility issues in android apps, in: The ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2018), 2018.

[4] J. Gao, L. Li, P. Kong, T.F. Bissyandé, J. Klein, Understanding the evolution of
android app vulnerabilities, IEEE Trans. Reliab. (TRel) (2019).

[5] J. Gao, P. Kong, L. Li, T.F. Bissyandé, J. Klein, Negative results on mining crypto-
API usage rules in android apps, in: The 16th International Conference on Mining
Software Repositories (MSR 2019), 2019.

[6] P. Liu, L. Li, Y. Yan, M. Fazzini, J. Grundy, Identifying and characterizing
silently-evolved methods in the android API, in: The 43rd ACM/IEEE Inter-
national Conference on Software Engineering, SEIP Track (ICSE-SEIP 2021),
2021.

[7] L. Li, J. Gao, T.F. Bissyandé, L. Ma, X. Xia, J. Klein, CDA: Characterising
deprecated android APIs, Empir. Softw. Eng. (EMSE) (2020).

[8] L. Li, T. Riom, T.F. Bissyandé, H. Wang, J. Klein, Y. Le Traon, Revisiting the
impact of common libraries for android-related investigations, J. Syst. Softw.
(JSS) (2019).

[9] L. Li, T.F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein,
Y. Le Traon, Static analysis of android apps: A systematic literature review, Inf.
Softw. Technol. (2017).

[10] P. Kong, L. Li, J. Gao, K. Liu, T.F. Bissyandé, J. Klein, Automated testing of
android apps: A systematic literature review, IEEE Trans. Reliab. (2018).

[11] T.T. Nguyen, H.V. Pham, P.M. Vu, T.T. Nguyen, Recommending API usages for
mobile apps with hidden markov model, in: 2015 30th IEEE/ACM International
11

Conference on Automated Software Engineering (ASE), IEEE, 2015, pp. 795–800.
[12] W. Yuan, H.H. Nguyen, L. Jiang, Y. Chen, J. Zhao, H. Yu, API recommendation
for event-driven Android application development, Inf. Softw. Technol. 107
(2019) 30–47.

[13] H. Niu, I. Keivanloo, Y. Zou, API usage pattern recommendation for software
development, J. Syst. Softw. 129 (2017) 127–139.

[14] M.M. Rahman, C.K. Roy, D. Lo, Rack: Automatic api recommendation using
crowdsourced knowledge, in: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 1, IEEE, 2016,
pp. 349–359.

[15] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei, MAPO: Mining and recommending
API usage patterns, in: European Conference on Object-Oriented Programming,
Springer, 2009, pp. 318–343.

[16] W. Yang, M.R. Prasad, T. Xie, A grey-box approach for automated GUI-model
generation of mobile applications, in: International Conference on Fundamental
Approaches to Software Engineering, Springer, 2013, pp. 250–265.

[17] S. Gao, L. Liu, Y. Liu, H. Liu, Y. Wang, API recommendation for the development
of Android App features based on the knowledge mined from App stores, Sci.
Comput. Program. 202 (2021) 102556.

[18] W. Yuan, H.H. Nguyen, L. Jiang, Y. Chen, LibraryGuru: API recommendation
for Android developers, in: Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, 2018, pp. 364–365.

[19] C. Chen, T. Su, G. Meng, Z. Xing, Y. Liu, From ui design image to gui
skeleton: a neural machine translator to bootstrap mobile gui implementation,
in: Proceedings of the 40th International Conference on Software Engineering,
2018, pp. 665–676.

[20] D.D. Perez, W. Le, Generating predicate callback summaries for the android
framework, in: 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), IEEE, 2017, pp. 68–78.

[21] W. Song, X. Qian, J. Huang, EHBDroid: Beyond GUI testing for Android
applications, in: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2017, pp. 27–37.

[22] V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla, A. Zeller,
Detecting behavior anomalies in graphical user interfaces, in: 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C),
IEEE, 2017, pp. 201–203.

[23] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: An efficient alternative to
SIFT or SURF, in: 2011 International Conference on Computer Vision, Ieee, 2011,
pp. 2564–2571.

[24] M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing
scheme based on p-stable distributions, in: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, 2004, pp. 253–262.

[25] D.R. Kaeli, P. Mistry, D. Schaa, D.P. Zhang, Heterogeneous Computing with
OpenCL 2.0, Morgan Kaufmann, 2015.

[26] E.S. Ristad, P.N. Yianilos, Learning string-edit distance, IEEE Trans. Pattern Anal.
Mach. Intell. 20 (5) (1998) 522–532.

[27] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and
reversals, in: Soviet Physics Doklady, Vol. 10, 1966, pp. 707–710.

[28] S. Sarkar, D. Das, P. Pakray, A. Gelbukh, JUNITMZ at SemEval-2016 task 1:
Identifying semantic similarity using Levenshtein ratio, in: Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016), 2016, pp.
702–705.

[29] J.B. Schafer, D. Frankowski, J. Herlocker, S. Sen, Collaborative filtering
recommender systems, in: The Adaptive Web, Springer, 2007, pp. 291–324.

[30] P.T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule, M. Di Penta,
Focus: A recommender system for mining api function calls and usage patterns,
in: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), IEEE, 2019, pp. 1050–1060.

[31] A. Rountev, D. Yan, Static reference analysis for GUI objects in Android
software, in: Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2014, pp. 143–153.

[32] S. Arzt, S. Rasthofer, E. Bodden, The soot-based toolchain for analyzing android
apps, in: 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), IEEE, 2017, pp. 13–24.

[33] L. Li, J. Gao, M. Hurier, P. Kong, T.F. Bissyandé, A. Bartel, J. Klein, Y. Le Traon,
Androzoo++: Collecting millions of android apps and their metadata for the
research community, 2017, arXiv preprint arXiv:1709.05281.

[34] H. Yu, X. Xia, X. Zhao, W. Qiu, Combining collaborative filtering and topic
modeling for more accurate android mobile app library recommendation, in:
Proceedings of the 9th Asia-Pacific Symposium on Internetware, 2017, pp. 1–6.

[35] P. Lam, E. Bodden, O. Lhoták, L. Hendren, The soot framework for java program
analysis: a retrospective, in: Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), Vol. 15, 2011, p. 35.

[36] S. Yang, D. Yan, H. Wu, Y. Wang, A. Rountev, Static control-flow analysis of
user-driven callbacks in android applications, in: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1, IEEE, 2015, pp. 89–99.

[37] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, A. Rountev,
Static window transition graphs for Android, Autom. Softw. Eng. 25 (4) (2018)
833–873.

https://www.smashingmagazine.com/2017/12/improving-mobile-app-competitive-analysis/
https://www.smashingmagazine.com/2017/12/improving-mobile-app-competitive-analysis/
https://www.smashingmagazine.com/2017/12/improving-mobile-app-competitive-analysis/
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb2
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb2
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb2
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb2
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb2
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb3
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb4
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb4
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb4
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb5
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb6
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb6
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb6
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb6
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb6
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb6
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb6
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb7
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb8
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb9
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb9
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb9
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb9
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb9
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb10
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb10
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb10
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb11
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb11
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb11
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb11
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb11
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb12
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb12
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb12
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb12
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb12
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb13
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb14
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb15
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb15
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb15
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb15
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb15
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb16
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb17
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb20
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb21
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb22
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb22
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb22
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb22
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb22
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb22
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb22
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb23
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb23
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb23
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb23
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb23
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb25
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb25
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb25
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb26
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb26
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb26
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb27
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb27
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb27
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb29
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb29
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb29
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb30
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb30
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb30
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb30
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb30
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb30
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb30
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb32
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb32
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb32
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb32
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb32
http://arxiv.org/abs/1709.05281
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb35
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb36
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb37
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb37
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb37
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb37
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb37

Information and Software Technology 138 (2021) 106619Y. Zhao et al.
[38] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D.
Octeau, P. McDaniel, Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps, Acm Sigplan Not. 49 (6) (2014)
259–269.

[39] L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, P. McDaniel, Iccta: Detecting inter-component privacy
leaks in android apps, in: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1, IEEE, 2015, pp. 280–291.

[40] R. Coppola, M. Morisio, M. Torchiano, Evolution and fragilities in scripted gui
testing of android applications, in: Proceedings of the 3rd International Workshop
on User Interface Test Automation, ACM, 2017.

[41] X. Xiao, X. Wang, Z. Cao, H. Wang, P. Gao, Iconintent: automatic identification
of sensitive ui widgets based on icon classification for android apps, in: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE,
2019, pp. 257–268.

[42] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, K. Zhang,
Understanding Android obfuscation techniques: A large-scale investigation in the
wild, in: International Conference on Security and Privacy in Communication
Systems, Springer, 2018, pp. 172–192.

[43] B. Lika, K. Kolomvatsos, S. Hadjiefthymiades, Facing the cold start problem in
recommender systems, Expert Syst. Appl. 41 (4) (2014) 2065–2073.

[44] Q. He, B. Li, F. Chen, J. Grundy, X. Xia, Y. Yang, Diversified third-party library
prediction for mobile app development, IEEE Trans. Softw. Eng. (2020).

[45] S.P. Reiss, Y. Miao, Q. Xin, Seeking the user interface, Autom. Softw. Eng. 25
(1) (2018) 157–193.

[46] T. Beltramelli, pix2code: Generating code from a graphical user interface screen-
shot, in: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, 2018, pp. 1–6.
12
[47] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao, Z. Liu, F. Xu,
et al., DeepIntent: Deep icon-behavior learning for detecting intention-behavior
discrepancy in mobile apps, in: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 2421–2436.

[48] Z. Ma, H. Wang, Y. Guo, X. Chen, LibRadar: fast and accurate detection of
third-party libraries in Android apps, in: Proceedings of the 38th International
Conference on Software Engineering Companion, 2016, pp. 653–656.

[49] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, W. Huo, LibD: scalable
and precise third-party library detection in android markets, in: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), IEEE, 2017, pp.
335–346.

[50] L. Li, T.F. Bissyandé, J. Klein, Y. Le Traon, Parameter values of Android APIs: A
preliminary study on 100,000 apps, in: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1, IEEE, 2016,
pp. 584–588.

[51] T.T. Nguyen, H.V. Pham, P.M. Vu, T.T. Nguyen, Learning API usages from byte-
code: a statistical approach, in: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), IEEE, 2016, pp. 416–427.

[52] X. Gu, H. Zhang, D. Zhang, S. Kim, Deep API learning, in: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016, pp. 631–642.

[53] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, X. Luo, Rosf: Leveraging
information retrieval and supervised learning for recommending code snippets,
IEEE Trans. Serv. Comput. 12 (1) (2016) 34–46.

[54] F. Thung, D. Lo, J. Lawall, Automated library recommendation, in: 2013 20th
Working Conference on Reverse Engineering (WCRE), IEEE, 2013, pp. 182–191.

http://refhub.elsevier.com/S0950-5849(21)00092-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb38
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb39
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb39
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb39
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb39
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb39
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb39
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb39
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb40
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb40
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb40
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb40
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb40
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb41
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb41
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb41
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb41
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb41
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb41
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb41
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb42
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb42
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb42
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb42
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb42
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb42
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb42
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb43
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb43
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb43
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb44
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb44
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb44
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb45
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb45
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb45
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb49
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb49
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb49
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb49
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb49
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb49
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb49
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb50
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb50
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb50
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb50
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb50
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb50
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb50
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb51
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb51
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb51
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb51
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb51
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb53
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb53
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb53
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb53
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb53
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb54
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb54
http://refhub.elsevier.com/S0950-5849(21)00092-6/sb54

	Icon2Code: Recommending code implementations for Android GUI components
	Introduction
	Motivation
	Icon2Code
	DCM: Database Construction Module
	Preprocessing
	Code analysis
	Call graph construction
	Database construction

	SCM: Similarity Calculation Module
	ARM: API recommendation module

	Evaluation
	Dataset
	Evaluation metrics
	RQ1: Performance of Icon2Code
	RQ2: Impact of the selected number of similar icons
	RQ3: Impact of similarity calculation methods
	RQ4: Performance on different groups of training icons

	Discussion
	Threats to validity
	Limitations and future work

	Related work
	GUI analysis in Android
	Recommendation in Android development
	Collaborative filtering in software engineering

	Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

